• Title/Summary/Keyword: School Ventilation

Search Result 684, Processing Time 0.031 seconds

Numerical Simulation of Ventilation in the Storage Hall of Tripitaka Koreana at Haein Temple in Case of Building Rearrangement (해인사 장경판전 주변 건축물 이건에 따른 장경판전 환기 기류 변화 해석)

  • Hur, Nahm-Keon;Lee, Myung-Sung;Yang, Sung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.379-385
    • /
    • 2007
  • In the present study, ventilation flow in the Janggyeongpan-Jeon at Haein temple in case of building rearrangement has been investigated numerically. To achieve more accurate results, detailed shapes such as buildings and the window grills are modeled and tree canopy model is adopted to account for the effect of trees in the computation. Wind velocities as boundary condition are taken from meteorological statistical data. The numerical results show that ventilation flow distributions at Janggyeongpan-Jeon in case of building rearrangement are nearly similar to those before rearrangement.

Maximal Oxygen Consumption in the Secondary School Boys (남자 중 . 고둥학생의 최대 산소 성취량)

  • Kwak, Pan-Dal;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 1968
  • Maximal oxygen consumption measurements were performed on 15 middle school boys (age: mean 14.0, range: $13{\sim}16$ years) and 14 high school boys (age: mean 17.4, range: $16{\sim}19$ years). General body build was greater in the high school boys and absolute values of body height, body weight, skinfold thicknesses, maximal oxygen uptake, and maximal pulmonary ventilation followed the same trend. Considered on the basis of body build, however, the values of high school boys were not always greater than those of middle school boys. The following results were obtained. 1. Maximal oxygen consumption in middle school boys was 2.11 l/min., 53.7ml/kg b. weight, 13.9 ml/cm body height, and 63.7 ml/kg LBM. In high school boys the values were: 2.86 l/min., 52.7 ml/kg b.wt., 17.5 ml/cm b. height, and 57.9 ml/kg LBM. Thus, middle school boys were superior to high school boys on body weight and lean body mass basis. They were also superior to the European boys of the same age. 2. The ratio of maximal oxygen uptake to resting value was 9.7 in middle school boys, and 10.8 in high school boys. 3. Maximal pulmonary ventilation in middle school boys was 58.0 l/min., and 84.0 l/min. in high school boys. The ratio of maximal ventilation to resting value was the same as oxygen uptake, namely, 9.7 in middle school boys and 10.7 in high school boys. 4. Ventilation equivalent in middle school boys was 27.5 and 29.3 in high school boys. These values represent values of untrained male subjects. 5. Maximal heart rate in high school boys reached to 193 beat/min. and is 2.9 times that of resting heart rate. 6. Maximal oxygen pulse in high school boys was 16.6 ml/beat and was same as that of untrained subject. 7. Correlation between body weight and maximal oxygen consumption in middle school boys was r=0.570, and r=0.162 in high school boys. Correlation between lean body mass in middle school boys was r=0.499, and r=0.158 in high school boys. Interrelation between body weight and maximal pulmonary ventilation was poor. 8. The differences between trained and untrained subjects were discussed.

  • PDF

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

Predicting Mortality in Patients with Tuberculous Destroyed Lung Receiving Mechanical Ventilation

  • Kim, Won-Young;Kim, Mi-Hyun;Jo, Eun-Jung;Eom, Jung Seop;Mok, Jeongha;Kim, Ki Uk;Park, Hye-Kyung;Lee, Min Ki;Lee, Kwangha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Background: Patients with acute respiratory failure secondary to tuberculous destroyed lung (TDL) have a poor prognosis. The aim of the present retrospective study was to develop a mortality prediction model for TDL patients who require mechanical ventilation. Methods: Data from consecutive TDL patients who had received mechanical ventilation at a single university-affiliated tertiary care hospital in Korea were reviewed. Binary logistic regression was used to identify factors predicting intensive care unit (ICU) mortality. A TDL on mechanical Ventilation (TDL-Vent) score was calculated by assigning points to variables according to ${\beta}$ coefficient values. Results: Data from 125 patients were reviewed. A total of 36 patients (29%) died during ICU admission. On the basis of multivariate analysis, the following factors were included in the TDL-Vent score: age ${\geq}65$ years, vasopressor use, and arterial partial pressure of oxygen/fraction of inspired oxygen ratio <180. In a second regression model, a modified score was then calculated by adding brain natriuretic peptide. For TDL-Vent scores 0 to 3, the 60-day mortality rates were 11%, 27%, 30%, and 77%, respectively (p<0.001). For modified TDL-Vent scores 0 to ${\geq}3$, the 60-day mortality rates were 0%, 21%, 33%, and 57%, respectively (p=0.001). For both the TDL-Vent score and the modified TDL-Vent score, the areas under the receiver operating characteristic curve were larger than that of other illness severity scores. Conclusion: The TDL-Vent model identifies TDL patients on mechanical ventilation with a high risk of mortality. Prospective validation studies in larger cohorts are now warranted.

The study on the effect of the solar radiation on thermal comfort and ventilation performance in room space (태양일사가 실내공간의 열적 쾌적성과 환기성능에 미치는 영향에 관한 연구)

  • Yeon, Seong Hyeon;Lee, Hyo Joon;Rhee, Gwang Hoon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Modern people spend much time at indoor space. So, People want to make better indoor air condition. But the facade of building is made of glass to be seen urbanely, the effect of solar radiation makes indoor environment worse. This study designs an open space affected by solar radiation with 4-way cassette air-conditioner. Using numerical simulation, this paper investigates thermal comfort and ventilation performance with discharge angles $30^{\circ}$ and $45^{\circ}$. To study thermal comfort, this paper studies distribution of velocity, temperature and effective draft temperature. Also, this paper introduces concept of air age to study ventilation performance. The flow influenced by solar radiation determines thermal comfort and ventilation performance in room space. This study shows that discharge angle of 45 degree has better thermal comfort and ventilation performance than that of 30 degree.

Evaluation of the location of the Outlets according to the Analysis of Ventilation conditions (환기상태 분석에 따른 급 배기구 위치 평가)

  • Moon, Yong-Jun;Kim, Hyouk-Soon;Kwak, Myong-Keun;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1207-1212
    • /
    • 2008
  • The purpose of this study is to evaluate the location of the outlets in the mechanical ventilation system installed in apartment. We performed the numerical analysis to estimate the ventilation effectiveness and the indoor $CO_2$ concentration considering the occupants and the condition with inlet and outlet in each room. From the numerical results, modified location of the outlets is about 10% high than designed one with respect to the ventilation effectiveness when the occupants are not considered. But designed location of inlet and outlet in living room and kitchen is better than modified one with respect to the reduction of $CO_2$ concentration in the living room and kitchen with occupants. In case of our model, Air change per hour (0.7) is not enough to sustain the acceptable criteria of $CO_2$ concentration (1000ppm) in the room with the occupants

  • PDF

A Study on the Concentration Variations of VOCs and Formaldehyde on the Type of Interior Materials of New Vehicles by Simulation Program (시뮬레이션 프로그램을 이용한 신규 차량의 인테리어 물질에 따른 VOC와 폼알데히드의 농도 변화에 관한 연구)

  • Yi, Young-Seop;Kim, In-Bum;Ko, Won-Kyoung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • The concentrations of Volatile Organic Compounds(VOCs) and Formaldehyde(HCHO) for interior materials of new vehicles are estimated and recognized by using the simulation program known as IAQx. The concentrations of contaminants are estimated and evaluated by the ventilation rates of new domestic vehicles and the required ventilation rates for new vehicles are estimated through the given contaminant data. This study is conducted to compare the ventilation rates for the contaminants between the discontinuously ventilated new vehicles and the continuously ventilated new vehicles using the simulation program. The equation of ventilation rate of new vehicles is acquired to be able to lower initial concentrations below the standard level under different conditions for both business and personal commuting.

The Study on the Renovation Method of Apartment House Ventilation System for Reducing Indoor Air Contamination (실내오염 저감을 위한 공동주택 환기시스템의 개선방안에 대한 연구)

  • Hwang, Tae-Chul;Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.409-415
    • /
    • 2008
  • Recently, Indoor air quality (IAQ) is one of the most important problem in our daily life of modern societies. Mechanical ventilation system is being recommended as an effective method to improve IAQ in apartment houses. And then, in Korea, building industry should install ventilation system in apartment house by the building construction code. In this study, to improve IAQ caused by microbial and chemical contaminant such as bacteria and TVOC, three types of mechanical ventilation system of apartment house including HRV were simulated by multizone modeling. Simulation results suggest an appropriate and economical renovation method of apartment house ventilation system for reducing indoor air contamination.

Evaluation of Indoor Air Quality Improvement by Formaldehyde Emission Rate in School Indoor Environment Using Mass Balance (물질수지를 이용한 학교 실내환경의 포름알데히드(HCHO) 배출량 산정에 의한 실내공기질 개선 평가)

  • Yang, Won-Ho;Son, Bu-Soon;Kim, Dae-Won;Kim, Young-Hee;Byeon, Jae-Cheol;Jung, Soon-won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • Schools have significant and serious indoor environmental health problem, of which indoor air quality (IAQ) in school building may affect the health of the students and indirectly affect learning performance. Schools are of special concern when regarding indoor exposure to air pollutants, because students are particularly sensitive to pollutants and spend a significant amount of time in that environment. Therefore researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide(TiO2) coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde emission rate in school indoor environments by far-Infrared ray coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor air quality.

Association between Medical Costs and the ProVent Model in Patients Requiring Prolonged Mechanical Ventilation

  • Roh, Jiyeon;Shin, Myung-Jun;Jeong, Eun Suk;Lee, Kwangha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.166-172
    • /
    • 2019
  • Background: The purpose of this study was to determine whether components of the ProVent model can predict the high medical costs in Korean patients requiring at least 21 days of mechanical ventilation (prolonged mechanical ventilation [PMV]). Methods: Retrospective data from 302 patients (61.6% male; median age, 63.0 years) who had received PMV in the past 5 years were analyzed. To determine the relationship between medical cost per patient and components of the ProVent model, we collected the following data on day 21 of mechanical ventilation (MV): age, blood platelet count, requirement for hemodialysis, and requirement for vasopressors. Results: The mortality rate in the intensive care unit (ICU) was 31.5%. The average medical costs per patient during ICU and total hospital (ICU and general ward) stay were 35,105 and 41,110 US dollars (USD), respectively. The following components of the ProVent model were associated with higher medical costs during ICU stay: age <50 years (average 42,731 USD vs. 33,710 USD, p=0.001), thrombocytopenia on day 21 of MV (36,237 USD vs. 34,783 USD, p=0.009), and requirement for hemodialysis on day 21 of MV (57,864 USD vs. 33,509 USD, p<0.001). As the number of these three components increased, a positive correlation was found betweeen medical costs and ICU stay based on the Pearson's correlation coefficient (${\gamma}$) (${\gamma}=0.367$, p<0.001). Conclusion: The ProVent model can be used to predict high medical costs in PMV patients during ICU stay. The highest medical costs were for patients who required hemodialysis on day 21 of MV.