• Title/Summary/Keyword: Scene Recognition

Search Result 193, Processing Time 0.025 seconds

Scene Recognition Using Local and Global Features (지역적, 전역적 특징을 이용한 환경 인식)

  • Kang, San-Deul;Hwang, Joong-Won;Jung, Hee-Chul;Han, Dong-Yoon;Sim, Sung-Dae;Kim, Jun-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.298-305
    • /
    • 2012
  • In this paper, we propose an integrated algorithm for scene recognition, which has been a challenging computer vision problem, with application to mobile robot localization. The proposed scene recognition method utilizes SIFT and visual words as local-level features and GIST as a global-level feature. As local-level and global-level features complement each other, it results in improved performance for scene recognition. This improved algorithm is of low computational complexity and robust to image distortions.

Representative Batch Normalization for Scene Text Recognition

  • Sun, Yajie;Cao, Xiaoling;Sun, Yingying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2390-2406
    • /
    • 2022
  • Scene text recognition has important application value and attracted the interest of plenty of researchers. At present, many methods have achieved good results, but most of the existing approaches attempt to improve the performance of scene text recognition from the image level. They have a good effect on reading regular scene texts. However, there are still many obstacles to recognizing text on low-quality images such as curved, occlusion, and blur. This exacerbates the difficulty of feature extraction because the image quality is uneven. In addition, the results of model testing are highly dependent on training data, so there is still room for improvement in scene text recognition methods. In this work, we present a natural scene text recognizer to improve the recognition performance from the feature level, which contains feature representation and feature enhancement. In terms of feature representation, we propose an efficient feature extractor combined with Representative Batch Normalization and ResNet. It reduces the dependence of the model on training data and improves the feature representation ability of different instances. In terms of feature enhancement, we use a feature enhancement network to expand the receptive field of feature maps, so that feature maps contain rich feature information. Enhanced feature representation capability helps to improve the recognition performance of the model. We conducted experiments on 7 benchmarks, which shows that this method is highly competitive in recognizing both regular and irregular texts. The method achieved top1 recognition accuracy on four benchmarks of IC03, IC13, IC15, and SVTP.

Scene Recognition based Autonomous Robot Navigation robust to Dynamic Environments (동적 환경에 강인한 장면 인식 기반의 로봇 자율 주행)

  • Kim, Jung-Ho;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.245-254
    • /
    • 2008
  • Recently, many vision-based navigation methods have been introduced as an intelligent robot application. However, many of these methods mainly focus on finding an image in the database corresponding to a query image. Thus, if the environment changes, for example, objects moving in the environment, a robot is unlikely to find consistent corresponding points with one of the database images. To solve these problems, we propose a novel navigation strategy which uses fast motion estimation and a practical scene recognition scheme preparing the kidnapping problem, which is defined as the problem of re-localizing a mobile robot after it is undergone an unknown motion or visual occlusion. This algorithm is based on motion estimation by a camera to plan the next movement of a robot and an efficient outlier rejection algorithm for scene recognition. Experimental results demonstrate the capability of the vision-based autonomous navigation against dynamic environments.

  • PDF

Recent Trends of Object and Scene Recognition Technologies for Mobile/Embedded Devices (모바일/임베디드 객체 및 장면 인식 기술 동향)

  • Lee, S.W.;Lee, G.D.;Ko, J.G.;Lee, S.J.;Yoo, W.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.133-144
    • /
    • 2019
  • Although deep learning-based visual image recognition technology has evolved rapidly, most of the commonly used methods focus solely on recognition accuracy. However, the demand for low latency and low power consuming image recognition with an acceptable accuracy is rising for practical applications in edge devices. For example, most Internet of Things (IoT) devices have a low computing power requiring more pragmatic use of these technologies; in addition, drones or smartphones have limited battery capacity again requiring practical applications that take this into consideration. Furthermore, some people do not prefer that central servers process their private images, as is required by high performance serverbased recognition technologies. To address these demands, the object and scene recognition technologies for mobile/embedded devices that enable optimized neural networks to operate in mobile and embedded environments are gaining attention. In this report, we briefly summarize the recent trends and issues of object and scene recognition technologies for mobile and embedded devices.

Arabic Words Extraction and Character Recognition from Picturesque Image Macros with Enhanced VGG-16 based Model Functionality Using Neural Networks

  • Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1807-1822
    • /
    • 2023
  • Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.18 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.

Candidate Word List and Probability Score Guided for Korean Scene Text Recognition (후보 단어 리스트와 확률 점수에 기반한 한국어 문자 인식 모델)

  • Lee, Yoonji;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.73-75
    • /
    • 2022
  • Scene Text Recognition is a technology used in the field of artificial intelligence that requires manless robot, automatic vehicles and human-computer interaction. Though scene text images are distorted by noise interference, such as illumination, low resolution and blurring. Unlike previous studies that recognized only English, this paper shows a strong recognition accuracy including various characters, English, Korean, special character and numbers. Instead of selecting only one class having the highest probability value, a candidate word can be generated by considering the probability value of the second rank as well, thus a method can be corrected an existing language misrecognition problem.

  • PDF

Vehicle Recognition using Non-negative Tensor Factorization (비음수 텐서 분해를 이용한 차량 인식)

  • Ban, Jae Min;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.136-146
    • /
    • 2015
  • The active control of a vehicle based on vehicle recognition is one of key technologies for the intelligent vehicle, and the part-based image representation is necessary to recognize vehicles with only partial shapes of vehicles especially in urban scene where occlusions frequently occur. In this paper, we implemented a part-based image representation scheme using non-negative tensor factorization(NTF) and realized a robust vehicle recognition system using the NTF feature. The result shows that the proposed method gives more intuitive part-based representation and more robust recognition in urban scene.

Scene Text Recognition Performance Improvement through an Add-on of an OCR based Classifier (OCR 엔진 기반 분류기 애드온 결합을 통한 이미지 내부 텍스트 인식 성능 향상)

  • Chae, Ho-Yeol;Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1086-1092
    • /
    • 2020
  • An autonomous agent for real world should be able to recognize text in scenes. With the advancement of deep learning, various DNN models have been utilized for transformation, feature extraction, and predictions. However, the existing state-of-the art STR (Scene Text Recognition) engines do not achieve the performance required for real world applications. In this paper, we introduce a performance-improvement method through an add-on composed of an OCR (Optical Character Recognition) engine and a classifier for STR engines. On instances from IC13 and IC15 datasets which a STR engine failed to recognize, our method recognizes 10.92% of unrecognized characters.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.