• Title/Summary/Keyword: Scenario ground motion

Search Result 24, Processing Time 0.022 seconds

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings (국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가)

  • Jeon, Seong-Ha;Shin, Dong-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

Experimental Study on the Seismic Structural Responses Subjected to Different Earthquakes (지진특성에 따른 구조물의 지진응답실험)

  • 최인길;김형규;김민규;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.82-89
    • /
    • 2003
  • Near-field ground motions exhibit special characteristics that are different from ordinary far-field ground motions. In this study the shaking table tests were conducted to evaluate the effect of earthquake ground motions with different characteristics on the response of the structure. The ground motions used in this study were the scenario earthquake, design earthquake, and Chi-Chi earthquake measured in TCU052 station. These earthquakes have different frequency contents. The test results show that the frequency content of ground motion is very important to the response of structures. The floor responses of structure were greatly affected by the higher modal frequencies, as well as the fundamental frequency. The responses of third floor were significantly reduced due to the interaction between the structure and the base isolated mass installed at the third floor.

  • PDF

Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions

  • Dolati, Abouzar;Taghikhany, Touraj;Khanmohammadi, Mohammad;Rahai, Alireza
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.573-589
    • /
    • 2015
  • In order to investigate the seismic behavior of highway bridges under near-fault earthquakes, a parametric study was conducted for different regular and irregular bridges. To this end, an existing regular viaduct Highway Bridge was used as a reference model and five irregular samples were generated by varying span length and pier height. The seismic response of the six highway bridges was evaluated by three dimensional non-linear response history analysis using an ensemble of far-fault and scenario-based near-fault records. In this regard, drift ratio, input and dissipated energy as well as damage index of bridges were compared under far- and near-fault motions. The results indicate that the drift ratio under near-fault motions, on the average, is 100% and 30% more than far-fault motions at DBE and MCE levels, respectively. The energy and damage index results demonstrate a dissipation of lower energy in piers and a significant increase of collapse risk, especially for irregular highway bridges, under near-fault ground motions.

Estimation of Earthquake Magnitude-Distance Combination Corresponding to Design Spectrum in Korean Building Code 2016 (우리나라 건축물 설계 스펙트럼에 상응하는 지진규모와 진앙거리의 추정)

  • Jeong, Gi Hyun;Lee, Han Seon;Hwang, Kyung Ran
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • In this study, to estimate the combination of earthquake magnitude ($M_w$) and distance (R) corresponding to the design spectrum defined in Korean Building Code (KBC) 2016, the response spectra predicted from the attenuation relationships with the variation of $M_w$ (5.0~7.0) and R (10~30km) are compared with the design spectrum in KBC 2016. Four attenuation relationships, which were developed based on local site characteristics and seismological parameters in Southern Korea and Eastern North America (ENA), are used. As a result, the scenario ground motions represented by the combinations of $M_w$ and R corresponding to the design spectrum for Seoul defined in KBC 2016 are estimated as (1) when R =10 km, $M_w=6.2{\sim}6.7$; (2) when R = 15 km, $M_w=6.5{\sim}6.9$; and (3) when R = 20 km, $M_w=6.7{\sim}7.1$.

Assessment of seismic risk of a typical RC building for the 2016 Gyeongju and potential earthquakes

  • Jee, Hyun Woo;Han, Sang Whan
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.337-351
    • /
    • 2021
  • On September 12, 2016, the Gyeongju earthquake occurred in the south-eastern region of the Korean peninsula. The event was ranked as the largest magnitude earthquake (=5.8) since instrumental recording was started by the Korean Metrological Administration (KMA) in 1978. The objective of this study is to provide information obtained from the 2016 Gyeongju earthquake and to propose a procedure estimating seismic risk of a typical old RC building for past and potential earthquakes. Ground motions are simulated using the point source model at 4941 grid locations in the Korean peninsula that resulted from the Gyeongju earthquake and from potential future earthquakes with the same hypocenter considering different soil conditions. Nonlinear response history analyses are conducted for each grid location using a three-story gravity-designed reinforced concrete (RC) frame that most closely represents conventional old school and public buildings. Then, contour maps are constructed to present the seismic risk associated with this building for the Gyeongju earthquake and potential future scenario earthquakes. These contour maps can be useful in the development of a mitigation plan for potential earthquake damage to school and public buildings at all grid locations on the Korean peninsula.

Seismic Behavior of Inverted T-type Wall under Earthquake Part I : Verification of the Numerical Modeling Techniques (역T형 옹벽의 지진시 거동특성 Part I : 수치해석 모델링 기법의 검증)

  • Lee, Jin-sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in this paper and the latter in the companion paper. The verification is conducted via geotechnical dynamic centrifuge test in prototype scale. Response of wall stem, ground motions behind the wall obtained from RHA matched pretty well with physical test performed under centrifugal acceleration of 50g. The rigorously verified RHA is used for parametric study to investigate an effect of input earthquake motion selection in the companion paper.

A Study on the Seismic Damage Scenario in the Model District of Seoul City (서울시 모델 구역에서의 지진피해시나리오 연구)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.223-230
    • /
    • 1999
  • The seismic damage assessment to the postulated earthquake is attempted for the buildings in the model district of Seoul City. The capacity spectrum method is employed in which the vulnerability functions are expressed as functions of the spectral displacement. the database of the building stock is constructed and managed using Geographic Information System software. The model district is selected to represent the typical structural and residential characteristics of Seoul City The structural properties were collected from the design documents. The field inspections were carried out to find out the current status of the building. They are classified into 11 structural types. The fragility curves in HazUS are employed, The ground motions from the postulated earthquakes are simulated using the Boor's methods, The surface soil in the district is classified into 3 profiles using the depth as the parameter. The one-dimensional wave propagation method is used to calculate he filtered ground motion through surface soil layer. The average spectrum of this sample time histories is used as the demand curves. The calculated results are expressed in maps using GIS software ArcView 3.0a

  • PDF

Earthquake Loss Estimation of the Gyeongju Area using the Deterministic Method in HAZUS (HAZUS의 결정론적 방법을 이용한 경주지역의 지진재해예측)

  • Kang, Su-Young;Kim, Kwang-Hee;Suk, Bong-Chool;Yoo, Hai-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.597-600
    • /
    • 2008
  • Observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Then, the attenuation relation for the Western United States proposed by Sadigh et al.(1997) for the Site Class B has been selected for this study. It has been used for the earthquake loss estimation of the Gyeongju area located in southeast Korea using the deterministic method in HAZUS with a scenario earthquake (M=6.7). Application of the improved methodology for loss estimation in Korea will help decision makers for planning disaster responses and hazard mitigation.

  • PDF

Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part I: Application and Verification of a Novel Probabilistic Seismic Hazard Analysis Procedure (신(新) 확률론적 지진재해분석 및 국내 지진계수 개발 Part I: 신(新) 확률론적 지진재해분석 기법 적용 및 검증)

  • Park, Duhee;Kwak, Dong-Yeop;Jeong, Chang-Gyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.103-109
    • /
    • 2009
  • The probabilistic seismic hazard analysis (PSHA) calculates the probability of exceedance of a certain ground motion parameter within a finite period at a site of interest. PSHA is very robust in that it can account for the uncertainties in seismic source, wave passage effect, and seismic site effects and hence, it is the most widely used method in quantifying the future earthquake induced ground vibration. This paper evaluates the applicability of a new PSHA that is alleged to be able to reproduce the results of a conventional PSHA method, but generates a series of earthquake scenarios and corresponding ground motion time histories that are compatible with the scenarios. In the application, a 40,000 year period is simulated, during which 16,738 virtual earthquakes have occurred. The seismic hazard maps are generated from the outputs of the new PSHA. Comparisons with the maps generated by the conventional PSHA method demonstrated that the new PSHA can successfully reproduce the results of a conventional PSHA. The new PSHA may not be very meaningful in itself. However, the real advantage of the method is that it can be used to develop probabilisitic seismic site coefficients. The suite of generated ground motion time histories are used to develop probabilistic site coefficients in the companion paper.

  • PDF