• Title/Summary/Keyword: Scattered reflection correction

Search Result 2, Processing Time 0.015 seconds

New Methods for Correcting the Atmospheric Effects in Landsat Imagery over Turbid (Case-2) Waters

  • Ahn Yu-Hwan;Shanmugam P.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.289-305
    • /
    • 2004
  • Atmospheric correction of Landsat Visible and Near Infrared imagery (VIS/NIR) over aquatic environment is more demanding than over land because the signal from the water column is small and it carries immense information about biogeochemical variables in the ocean. This paper introduces two methods, a modified dark-pixel substraction technique (path--extraction) and our spectral shape matching method (SSMM), for the correction of the atmospheric effects in the Landsat VIS/NIR imagery in relation to the retrieval of meaningful information about the ocean color, especially from Case-2 waters (Morel and Prieur, 1977) around Korean peninsula. The results of these methods are compared with the classical atmospheric correction approaches based on the 6S radiative transfer model and standard SeaWiFS atmospheric algorithm. The atmospheric correction scheme using 6S radiative transfer code assumes a standard atmosphere with constant aerosol loading and a uniform, Lambertian surface, while the path-extraction assumes that the total radiance (L/sub TOA/) of a pixel of the black ocean (referred by Antoine and Morel, 1999) in a given image is considered as the path signal, which remains constant over, at least, the sub scene of Landsat VIS/NIR imagery. The assumption of SSMM is nearly similar, but it extracts the path signal from the L/sub TOA/ by matching-up the in-situ data of water-leaving radiance, for typical clear and turbid waters, and extrapolate it to be the spatially homogeneous contribution of the scattered signal after complex interaction of light with atmospheric aerosols and Raleigh particles, and direct reflection of light on the sea surface. The overall shape and magnitude of radiance or reflectance spectra of the atmospherically corrected Landsat VIS/NIR imagery by SSMM appears to have good agreement with the in-situ spectra collected for clear and turbid waters, while path-extraction over turbid waters though often reproduces in-situ spectra, but yields significant errors for clear waters due to the invalid assumption of zero water-leaving radiance for the black ocean pixels. Because of the standard atmosphere with constant aerosols and models adopted in 6S radiative transfer code, a large error is possible between the retrieved and in-situ spectra. The efficiency of spectral shape matching has also been explored, using SeaWiFS imagery for turbid waters and compared with that of the standard SeaWiFS atmospheric correction algorithm, which falls in highly turbid waters, due to the assumption that values of water-leaving radiance in the two NIR bands are negligible to enable retrieval of aerosol reflectance in the correction of ocean color imagery. Validation suggests that accurate the retrieval of water-leaving radiance is not feasible with the invalid assumption of the classical algorithms, but is feasible with SSMM.

Underwater Drone Development for Ship Inspection Part 1: Design, Production and Testing (선박 검사용 수중 드론 개발 Part 1: 설계·제작 및 시험)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Jeong, Kyeong-Teak;Choi, Hyun-Deuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.38-48
    • /
    • 2020
  • In order to inspect the existing or newly constructed ship's hull, a professional diver directly inspects the ship's bottom of the water. However, since it is a work done by people, there are many dangers such as human casualties and crashes. To solve this problem, it is necessary to develop underwater drones for ship inspection for visual inspection. The technology applied to underwater drones, the use and manufacturing process of each component, and the method of manufacture such as firmware development were described, and the difference was compared by measuring the drone's own driving ability and driving ability using crawler under water, and the location tracking device test confirmed the error from the actual location. It is estimated that the use of underwater drones produced through this research will prevent human casualties and achieve economic effects and stability.