• Title/Summary/Keyword: Scattered particle

Search Result 65, Processing Time 0.026 seconds

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

PHASE VARIATION IN DOPPLER SIGNAL FOR VARIOUS OPTICAL PARAMETERS

  • Son, Jung-Young;Kim, Myung-Sik;Oh, Myung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.629-632
    • /
    • 1989
  • The scattered light intensity from a spherical particle passing through the cross-over region of two coherent laser beams, varies periodically. Photodetection of this light beams produces a periodic signal of varying amplitude. The phase of the signal varies with the particle size and refractive index, the beam crossing angle and wavelength, and the position and size of the scattered ligth collecting aperture. In this paper the phase variation with respect to the particle absorptive index of retraction, collecting lens size and beam crossing angle is calculated using both Mie scattering theory and reflection theory. The two theories show good agreement in phase predictions, especially for large absorptive indices and for small collection lenses. Both theories predict phase to be inversely proportional to the beam crossing angle.

  • PDF

Particle Sizing Using Light Scattering and Neural Networks (산란이론과 신경회로에 의한 입자크기계측)

  • 남부희;이상재;박민현;이영진;이석원;류태우;방병렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.447-453
    • /
    • 2000
  • Using the scattering theory of laser light, we analyze the particle sizing method. The scattered profile measured by the photodetector is sampled, scale conditioned by a 32 channel analog-to-digital converter, and is analyzed with the transform matrix from the light energy signals to the weights of the particle sizes. The particle size distribution is classified using the Hopfield neural network method as well as the conventional nonnegative least square method.

  • PDF

Black Matrix with Scattering Particles for the Enhancement of Visibility of Laser Beam (레이저 빔 시인성 향상을 위한 산란입자가 분산된 Black Matrix)

  • Park, June Buem;Shin, Dong-Kyun;Han, Seun Gjo;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.36-40
    • /
    • 2017
  • With an attempt to enhance the visibility of laser beam, we have investigated a black matrix with scattering particles by ray tracing simulations. As the scattering particle density is increased, the detected power by the receiver is increased, thereby enhancing the visibility. In reality, the visibility is reduced with increasing incident angle (away from the normal incidence) of laser beam, a phenomenon also observed by ray tracing simulations. It is due to the fact that the mean path is increased within a highly absorptive BM layer or a smaller number of rays hit the BM area when the incident angle is high. Embedding a number of scattering particles into BM may bring in crosstalk among pixels. However, it is negligible because scattered rays inside highly absorptive BM are re-scattered due to the high scattering particle density, decreasing the power of scattered rays into the active areas.

  • PDF

Distributions of Mean Particle Size and Age on the Lunar Surface

  • Jung, Min-Sup;Kim, Sung-Soo S.;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.2-103.2
    • /
    • 2011
  • We measure the degree of polarization of the lunar regolith to map the distributions of the age and the particle size. We use a 12cm refracting telescope with a 2k-square pixel color CCD (R band) and a polarization filter. The angular resolution obtained is 3.02 km/pixel. Our goal is to obtain a map of the lunar particle size distribution on the lunar regolith and then that of the age distribution. Polarization of the light scattered by lunar surface contains information on their mean particle size. The mean particle size of the lunar surface has been decreased by continued micro-meteoroid impact over a long period. One can estimate the age of the lunar surface if the mean particle size is known. Particle sizes can be measured through observations of polarization because the mean particle size is related to the maximum polarization and albedo. The age and the particle size of the lunar regolith can give vital information for the future lunar exploration.

  • PDF

Design of Photo-Detector for Particle Sizer Using Laser Diffraction (레이저 회절성에 의한 입자 크기의 계측을 위한 센서 설계)

  • Nam, Boo-Hee;Kang, Sung-Gui;Yu, Tae-U;Bang, Byeong-Ryeol;Jee, Gyu-ln
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.437-440
    • /
    • 1992
  • We design a multi-element photo-detector to measure the size of particles using the diffracted light energy distribution. The light energy that is scattered by particles in the collimated laser beam is collected by the Fourier transform lens and directed to the multi-semicircular concentric annular detecters. The scattered profile measured by the photodetector is sampled by a 32 channel analog-to-digital converter. A nonnegative least squares analysis translates the light energy distribution into the corresponding unique particle size distribution.

  • PDF

Construction of a Dynamic Laser Light Scattering System Using a Personal Computer$^\dag$

  • Kim, Myung-Joong;Lee, Sang-Yong;Chung, Koo-Soon;Lee, Hoo-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.403-405
    • /
    • 1987
  • A dynamic laser light scattering system has been constructed using a personal computer. The intensity of the scattered light was detected with a photomultiplier tube and a photon counter. The BCD output of the photon counter which is proportional to the intensity of scattered light is fed into a personal computer via an interface card. The personal computer was programmed as an autocorrelator in machine language. The data acquisition rate of the system was about 600 samples/s which is adequate for studies on the molecular dynamics of concentrated polymer solutions, polymer latices with large particle size, and polymer glass systems. The constructed system was tested with polystyrene latex and the measured diameter of the latex particle agrees well with the supplier's value.

Solar Wind Observations Using STELab-IPS Array In Japan

  • Fujiki, Ken'ichi;Tokumaru, Munetoshi;Iju, Tomoya;Hirota, Maria;Noda, Momotaro;Kojima, Masayoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • Radio wave from a compact radio source such as a quasar are scattered by irregularities of electron density. The scattered waves interfere with each other as they propagate to the Earth producing diffraction patterns on the ground. This phenomenon is called interplanetary scintillation (IPS). The IPS pattern contains the information of solar wind velocities and density fluctuations passing across a line-of-sight (LOS) from an observer to a radio source. The IPS is a useful tool which allows us to measure the solar wind in three dimensional space inaccessible to in situ observations. Although the IPS measurement is an integral of solar wind velocities and density fluctuations along the LOS, which causes degradation of accuracy, we have succeeded to develop computer assisted tomography (CAT) analysis to remove the effect of LOS integration. These techniques greatly improved the accuracy of determinations of solar wind velocity structures. In this talk we present our IPS observation system and long-term variation of global solar wind structures from 1980-2009, then we focus on recent peculiar solar wind properties.

  • PDF

Visualization of Scattered Plasma-based Particle Acceleration Data (산포된 플라즈마 기반의 가속입자 자료 가시화)

  • Shin, Han Sol;Yu, Tae Jun;Lee, Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2015
  • Particle accelerator has mainly used in nuclear field only because of the large scale of the facility. However, since laser-plasma particle accelerator which has smaller size and spends less cost developed, the availability of this accelerator is expended to various research fields such as industrial and medical. This paper suggests a visualization system to control the laser-plasma particle accelerator efficiently. This system offers real-time 3D images via convert HDF file comes from plasma data obtained from PIC simulation into OpenGL texture type to analyse and modify plasma data. After that, it stores high-resolution rendering images of the data with external renderer hereafter.