• 제목/요약/키워드: Scattered beam

검색결과 129건 처리시간 0.026초

경계요소법을 이용한 결함의 초음파 산란장 해석 (Application of a Boundary element Method to the Analysis of ultrasonic Scattering by Flaws)

  • 정현조;김진호;박문철
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2457-2465
    • /
    • 2002
  • Numerical modeling of a nondestructive testing system plays an important role in many aspects of quantitative nondestructive evaluation (QNDE). The ultimate goal of a model is to predict test results for a specific flaw in a material. Thus, in ultrasonic testing, a system model should include the transducer, its radiation pattern, the beam reflection and propagation, and scattering from defects. In this paper attention is focused on the scattering model and the scattered fields by defects are observed by an elastodynamic boundary element method. Flaw types addressed are void-like and crack-like flaws. When transverse ultrasonic waves are obliquely incident on the flaw, the angular distribution of far-field scattered displacements are calculated and presented in the form of A-scan mode. The component signals obtained from each scattering problem are identified and their differences are addressed. The numerical results are also compared with those obtained by high frequency approximate solutions.

A BAFFLE DESIGN FOR AN AIRGLOW PHOTOMETER ON BOARD THE KOREA SOUNDING ROCKET-III

  • LEE YOUNG SUN;KIM YONG HA;YI YU;KIM JHOON
    • 천문학회지
    • /
    • 제33권3호
    • /
    • pp.165-172
    • /
    • 2000
  • A baffle system for an airglow photometer, which will be on board the Korea Sounding Rocket-III(KSR-III), has been designed to suppress strong solar scattered lights from the atmosphere below the earth limb. Basic principles for designing a baffle system, such as determination of baffle dimensions, arrangement of vanes inside a baffle tube, and coating of surfaces, have been reviewed from the literature. By considering the constraints of the payload size of the KSR-III and the incident angle of solar light scattered from the earth limb, we first determined dimensions of a two-stage baffle tube for the airglow photometer. We then calculated positions and heights of vanes to prohibit diffusely reflected lights inside the baffle tube from entering into the photometer. In order to evaluate performance of the designed baffle system, we have developed a ray tracing program using a Monte Carlo method. The program computed attenuation factors of the baffle system on the order of $10^{-6}$ for angles larger than $10^{\circ}$, which satisfies the requirements of the KSR-III airglow experiment. We have also measured the attenuation factors for an engineering model of the baffle system with a simple collimating beam apparatus, and confirmed the attenuation factors up to about $10^{-4}$. Limitation of the apparatus does not allow to make more accurate measurements of the attenuation factors.

  • PDF

교정용 단일에너지 형광 X-선장의 제작 (Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields)

  • 김장렬;김봉환;장시영;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제23권1호
    • /
    • pp.33-47
    • /
    • 1998
  • 한국원자력연구소 교정시설에 설치되어 있는 MG325 X-선 발생장치와 ISO-4037에서 제시하고 있는 라디에이티 및 필터 8종을 조합하여 8.6 keV 부터 75 keV 까지의 단일에너지 형광 X-선을 제작하였다. 1차 X-선에 의하여 라디에이터에서 발생된 형광 X-선중 $K_{\beta}$를 필터를 사용하여 제거한 후 단지 $K_{\alpha}$만의 형광 X-선 스펙트럼을 고순도 평판형 반도체검출기와 휴대용 다중파고분석기로 분석하였으며 35 cc 전리함을 이용하여 이때의 선량률 (air kerma rates)를 측정하여 계산결과와 비교하였다. 또한 방사선장의 균일도분포를 전리함과 사진현상을 통하여 결정하였으며 산란 X-선의 영향도 측정하여 실제 적용가능성을 검토하였다. 실험결과 순도가 90 % 이상되는 8.6 keV부터 75 keV까지의 단일에너지 형광 X-선을 얻었으며 라디에이터 중심으로부터 43 cm 위치에서의 선량률은 1.91 mGy/h (라디에이터 : Au, 필터 : W)로부터 54.2mGy(라디에이터 : Mo, 필터 : Zr) 까지였다. 선량률 측정지점에서 방사선장의 유효면적은 12 cm ${\times}$ 12 cm로 계측기의 교정이나 개인선량계의 조사에 전혀 문제가 없음을 확인하였고 산란방사선의 영향도 3% 이하였다.

  • PDF

방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구 (Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy)

  • 나수경
    • 대한방사선치료학회지
    • /
    • 제14권1호
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Behavior of Hydroxide Ions at the Water-Ice Surface by Low Energy Sputtering Method

  • Kim, S.Y.;Park, E.H.;Kang, H.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.338-338
    • /
    • 2011
  • The behavior of hydroxide ions on water-ice films was studied by using $Cs^+$ reactive ion scattering (RIS), low energy sputtering (LES) and temperature-programmed desorption (TPD). A $Cs^+$ beam of a low kinetic energy (<100 eV) from $Cs^+$ ion gun was scattered at the film surface, and then $Cs^+$ projectiles pick up the neutral molecules on the surface as $Cs^+$-molecule clusters form (RIS process). In LES process, the preexisting ions on the surface are desorbed by the $Cs^+$ beam impact. The water-ice films made of a thick (>50 BL) $H_2$O layer and a thin $D_2O$ overlayer were controlled in temperatures 90~140K. We prepared hydroxide ions by using Na atoms which proceeded hydrolysis reaction either on the ice film surface or at the interface of the $H_2O$ and $D_2O$ layers.[1] The migration of hydroxide ions from the $H_2O/D_2O$ interface to the top of the film was examined as afunction of time. From this experiment, we show that hydroxide ions tend to reside at the water-ice surface. We also investigated the H/D exchange reactions of $H_2O$ and $D_2O$ molecules mediated by hydroxide ions to reveal the mechanism of migration of hydroxide to the ice surface.

  • PDF

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

Behavioral characteristics and spatio-temporal distribution of fish near the waters of Uljin marine ranch area in the East Sea using hydroacoustics

  • Euna Yoon;Doo-Jin Hwang;Eun-Bi Min
    • Fisheries and Aquatic Sciences
    • /
    • 제27권5호
    • /
    • pp.276-282
    • /
    • 2024
  • The present study was conducted to investigate the behavior and distribution characteristics of fishes near an artificial reef close to the waters of Uljin marine ranch. A 200-kHz, dual-beam frequency transducer was attached to the side of a ship for acoustic measurements. The fish formed small groups in the bottom layer near the artificial reef around the afternoon-sunset period; at night, the fish did not form groups and remained individually scattered. During dawn-sunrise and morning, the fish formed groups again and were found near the upper and middle layers of the artificial reef. High density of fish occurred near the middle of the nautical zone during morning, afternoon-sunset, and dawn-sunrise, periods; at nighttime, the distribution was uniform across the entire zone. Moreover, the mean Nautical Area Scattering Coefficients (NASC, m2/nmi2) value was highest during dawn-sunrise at 400.2 m2/nmi2, similar during night and morning (100.5 m2/nmi2), and lowest during afternoon-sunset (20.1 m2/nmi2). The present study is expected to provide the background for understanding the behavioral characteristics of fish living near artificial reefs and estimating the density and biomass of fish.

FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가 (Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads)

  • 황철성;박재성;박기태;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권1호
    • /
    • pp.9-14
    • /
    • 2017
  • 본 연구는 일반철근과 FRPH Bar를 주철근으로 한 철근 콘크리트 보부재를 대상으로 정적실험 및 반복하중 재하실험을 수행하여 에너지 소산성능 및 반복하중 저항성능을 분석하였다. 실험을 위하여 24MPa의 설계강도를 가진 콘크리트 보부재($200{\times}200{\times}2175mm$)를 제작하였으며, 4점 휨 시험을 수행하여 초기균열하중, 항복하중, 파괴하중을 측정하였다. 정적하중 재하실험을 통해 각 시험체에 대한 항복하중과 파괴강도를 측정하였는데, 항복하중은 RC보에서는 48.9kN, FRPH 보에서는 36kN으로 평가되었으며, 파괴하중은 두 시험체 모두 50kN의 강도를 보였다. 정적하중-처짐 결과에서는 FRPH 보는 RC보에 비하여 인장경화특성을 나타내는데, 이는 FRPH bar의 인장경화 특성에 기인한다. 반복하중하에서 FRPH bar를 가진 보에서는 일반 RC보와는 다르게 작은 폭의 균열이 넓게 발생하였으며, 우수한 처짐 복원력을 나타내었다. 정적 동적 에너지 비율을 이용한 에너지 소산능력에서는 RC보에서는 0.62, FRPH 보에서는 0.83으로 평가되었으며, 이를 통해 FRPH를 가진 보부재에서 효과적으로 반복하중에 대하여 저항함을 알 수 있다.

치료 방사선 선속(Flux)에 포함된 산란전자의 분포와 에너지 측정 (The Measurements of Energy and Distribution of Scattered Electrons in Therapeutic X-Ray Beam)

  • Vahc, Young-Woo;Park, Kyung-Ran;Ohyun Kwon;Lee, Yong-Ha;Kim, Tae-Hong;Kim, Sookil
    • 한국의학물리학회지:의학물리
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2002
  • 치료방사선 선형가속기에서 출력되는 광자선의 선속 (flux)에는 gantry head로부터 발생되는 오염전자를 포함하고 있으며, 오염전자의 발생은 주로 gantry head의 부속장비 또는 방사선 치료를 위해 gantry head 밑에 설치되는 부속장치 등에서 광자선과 매질의 전자쌍생성, 또는 컴프톤 산란전자 등의 물리적 현상으로 발생된다. 오염전자는 표면영역의 수cm 깊이의 선량 분포에 영향을 주고 있으며, 이것은 방사선 치료 시 skin-sparing 효과를 감소시키는 등 임상적인 측면에 영향을 주고 있다. 그러므로 선형가속기에서 발생되는 오염전자의 특성을 이해 할 필요가 있다. 본 연구는 선형가속기 (Clinac 1800, Varian )에서 출력되는 15MV 광자 선속에서 조사야의 크기가 0.0$\times$10.0 to 30.0$\times$30.0 $\textrm{cm}^2$에서 30.0$\times$30.0 $\textrm{cm}^2$ 대해 구리판(Cu)의 부분적 오염전자 제거 능력과, 조사야의 부분 차폐 방법을 이용하여 물팬톰 내의 선량분포의 변화를 측정하므로써 오염전자의 특성을 분석하였다. 그 결과 오염전자는 조사야의 중심축으로부터 넓게 퍼진 cone 모양의 분포를 하고 있었으며, 또한 오염전자가 갖는 평균 에너지는 약 3.0MeV로 나타났다. 그러므로 오염전자는 표면으로부터 2.5cm 깊이까지 분포하였다. 이러한 결과로써 광자선속에 포함된 오염전자를 제거하고 순수한 광자선을 이용한다면 buildup 영역 및 표면선량이 감소되고, 최대선량지점이 좀더 깊어진다.

  • PDF