• 제목/요약/키워드: Scanning tunneling microscope

검색결과 68건 처리시간 0.039초

초정밀 스테이지 설계 및 제어 시스템에 관한 연구 (A study of the design and control system for the ultra-precision stage)

  • 박종성;정규원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

Electronic Structures of Graphene on Ru(0001) : Scanning Tunneling Spectroscopy Study

  • Jang, Won-Jun;Jeon, Jeung-Hum;Yoon, Jong-Keon;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.307-307
    • /
    • 2011
  • Graphene is the hottest topic in condensed-matter physics due to its unusual electronic structures such as Dirac cones and massless linear dispersions. Graphene can be epitaxially grown on various metal surfaces with chemical vapor deposition processes. Such epitaxial graphene shows modified electronic structures caused by substrates. Here, local geometric and electronic structures of graphene grown on Ru(0001) will be presented. Scanning tunneling microscopy (STM) and spectroscopy (STS) was used to reveal energy dependent atomic level topography and position-dependent differential conductance spectra. Both topography and spectra show variations from three different locations in rippled structures caused by lattice mismatch between graphene and substrate. Based on the observed results, structural models for graphene on Ru(0001) system were considered.

  • PDF

근접장 주사 광학현미경을 이용한 광 도파로 특성 연구 (Characterization of optical waveguides with near - field scanning optical microscope)

  • 지원수;김대찬;이승걸;오범환;이일항
    • 한국광학회지
    • /
    • 제13권4호
    • /
    • pp.301-307
    • /
    • 2002
  • 광 도파로를 따라 전파하는 빛의 특성을 측정하기 위해 근접장 주사 광학현미경(Near-field scanning optical microscope, NSOM)으로 광 도파로의 표면에 형성된 에바네슨트 파 evanescent wave)의 분포를 측정하였다. 사용된 NSOM은 photon scanning tunneling microscope방식으로 본 연구의 목적에 적합하도록 직접 제작한 것이다. 광원 파장 1550㎚에서 단일 모드 다중 모드 채널형 광 도파로에 대해 도파로 표면에 형성된 에바네슨트 파의 분포를 측정하였으며, 3차원 빔전파방법(Beam Propagation Method)으로 계산된 수치 해석 결과와 두 모드 간의 간섭 형상을 직접적으로 확인할 수 있었다.

반복변형된 동 및 동알루미늄 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.67-72
    • /
    • 1999
  • Scanning probe Microscope(SPM) such as Scanning Tunneling Microscope(STM) and Atomic Force Microscope(AFM) was shown to be the powerful tool for nano-scale characterization of material surfaces Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform. and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

  • PDF

Mixed-Island Formation and Electronic Structure of Metallo-Porphyrin Molecules on Au(111)

  • 김호원;정경훈;강세종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.303-303
    • /
    • 2011
  • Orderings and electronic structures of organic molecules on metal substrates have been studied due to possible applications in electronic devices. In molecular systems, delocalized pi-electrons play important roles in the adsorption behaviors and electronic structures. We studied the adsorption and electronic structures of Co-Porphyrin molecules on Au(111) using scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperature. Molecules form closely packed two-dimensional islands on Au(111) surface with two different types, having different shape evolutions in our energy-dependent STM observations. The Kondo resonance state, occurred by spin exchange interaction between the Co center atom and conduction electrons in the metal substrate, was observed in one type, while it was absent in the other type in scanning tunneling spectroscopy measurements. Possible origins of two molecular shapes will be discussed.

  • PDF

Si(100)와 Si(111) 표면의 Ge 에피 성장 연구 (Epitaxial Growth of Ge on Si(100) and Si(111) Surfaces)

  • 강윤호;국양
    • 한국진공학회지
    • /
    • 제2권2호
    • /
    • pp.161-165
    • /
    • 1993
  • Si(100)와 Si(111) 표면에 에피 성장시킨 Ge의 기하학적, 전기적 구조가 scanning tunneling microscope로 연구되었다. Ge 원자는 scanning tunneling spectroscopy와 bias 전압을 달리한 STM 상에서 Si 원자와 구별되었다. 이것을 이용하여 Ge의 성장 형태를 연구하였다. (2${\times}$1) 재배열 구조를 가진 (100) 표면에서 Ge 성장층은 720K에서 B형의 step edge로부터 주로 성장하였다. (111) 표면에서도 주로 step edge에서 성장하였으며, Ge의 양과 annealing 온도에 따라 (5${\times}$5)와 (7${\times}$7)구조가 보였다.

  • PDF

Switching and sensing molecular spins by chemical reactions on metal surfaces

  • Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Controlling and sensing spin states of magnetic molecules such as metallo-porphyrins at the single molecule level is essential for spintronic molecular device applications. Axial coordinations of diatomic molecules to metallo-porphyrins also play key roles in dynamic processes of biological functions such as blood pressure control and immune response. However, probing such reactions at the single molecule level to understand their physical mechanisms has been rarely performed. Here we present on our single molecule association and dissociation experiments between diatomic and metallo-porphyrin molecules on Au(111) describing its adsorption structures, spin states, and dissociation mechanisms. We observed bright ring shapes in NO adsorbed metallo-porphyrin compelxes and explained them by considering tilted binding and precession motion of NO. Before NO exposure, Co-porphryin showed a clear zero-bias peak in scanning tunneling spectroscopy, a signature of Kondo effect in STS, whereas after NO exposures it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature implying that the Kondo effect was switched off by binding of NO. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses. From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances. Our study shows that single molecule association and dissociation can be used to probe spin states and reaction mechanisms in a variety of axial coordination between small molecules and metallo-porphyrins.

  • PDF

Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes

  • Kim, Taekyeong
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.513-516
    • /
    • 2014
  • We measure the conductance of a 4,4'-diaminobiphenyl formed with Ni electrodes using a scanning tunneling microscope-based break-junction technique. For comparison, we use Au or Ag electrodes to form a metal-molecular junction. For molecules that conduct through the highest occupied molecular orbital, junctions formed with Ni show similar conductance as Au and are more conductive than those formed with Ag, consistent with the higher work function for Ni or Au. Furthermore, we observe that the measured molecular junction length that is formed with the Ni or Au electrodes was shorter than that formed with the Ag electrodes. These observations are attributed to a larger gap distance of the Ni or Au electrodes compared to that of the Ag electrodes after the metal contact ruptures. Since our work allows us to measure the conductance of a molecule formed with various electrodes, it should be relevant to molecular electronics with versatile materials.