• Title/Summary/Keyword: Scanning tunneling microscope

Search Result 68, Processing Time 0.05 seconds

STM(Scanning Tunneling Microscope)의 제작 시 고려사항과 응용사례

  • 구자용
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.7-7
    • /
    • 2002
  • 실공간 (real space)에서 원자분해능을 보여주는 STM의 작동원리를 핵심사항을 중심으로 설명하며 또한 실제 제작 시 고려해야 하는 사항들을 구체적으로 검토한다. 반도체의 경우 전자들이 원자부근에서 국소화가 잘 되므로 STM으로 표면의 원자상을 얻기가 비교적 쉽다. 특히 실리콘은 그 물질의 중요성과 결부되어 STM으로 많이 연구되어 왔으며 다른 방법으로는 알 수 없는 독특한 결과들을 보여주었다. STM의 응용사례로써 오랫동안 수수께끼였던 Si(001) 표면에서 생기는 점결함(point defect)과 계단 (step)부근의 원자구조 및 최근의 몇 가지 연구결과에 대한 기본적인 결과들을 소개한다.

  • PDF

Characterization of Surface, Crystal and Electronic Structure of CVD Graphene/hBN Film (화학증기증착법으로 길러진 그래핀/붕화질소의 표면 원자 구조 및 전자 구조 연구)

  • Song, Yeong-Jae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.43-43
    • /
    • 2013
  • 붕화질소(hexagonal Boron Nitride, h-BN)위의 그래핀은 산화규소(SiO2) 위에 전사된 그래핀에 비해서 월등한 전기적 특성을 갖는다. 따라서 전자소자의 산업적 응용을 위한 대면적화를 위하여, 그래핀을 붕화질소위에 화학증기증착(CVD) 방법을 통해 직성장시키고, 그 전기적 성질이 산화규소 및 suspended된 그래핀에 비해서 훨씬 더 이상적임을 원자 수준의 공간해상도에서 초고진공 저온 주사형 터널링 현미경(scanning tunneling microscope, STM)을 통해 입증하였다.

  • PDF

최근 Micro Piezoelectric Actuator 연구 동향

  • 박준식;박효덕;강성군
    • Ceramist
    • /
    • v.7 no.3
    • /
    • pp.38-47
    • /
    • 2004
  • 최근 micro structure, micro sensor, micro actuator 및 microelectronics 등을 활용하는 microelectromecha-nical systems (MEMS) 기술은 마이크로 로봇, micro manipulation, 광학 소자 및 시스템, 유체, 열, 바이오 및 화학공정 등을 위한 시스템 그리고 atomic force와 scanning tunneling microscope 등에 사용되는 다양한 소자 등 많은 잠재력을 가지고 있다. 이들 응용 분야 들은 micro actuator와 같은 mechanical power source가 요구되는 경우가 있다. 압전 특성을 포함하는 강유전체 재료는 이러한 micro actuator를 위해 여러 가지 다양한 장점을 지니고 있는데, 이들을 정리하면 다음과 같다. (중략)

  • PDF

Oxygen-Silver Junction Formation for Single Molecule Conductance

  • Jo, Han Yeol;Yoo, Pil Sun;Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.18-21
    • /
    • 2015
  • We use a scanning tunneling microscope based break-junction technique to measure the conductance of a 4,4'-dimethoxybiphenyl molecular junction formed with Ag and Au electrodes. We observe the formation of a clear molecular junction with Ag electrodes that result from stable Ag-oxygen bonding structures. However we have no molecular bonding formation when using Au electrodes, resulting in a tunneling current between the top and bottom metal electrodes. We also see a clear peak in the conductance histogram of the Ag-oxygen molecular junctions, but no significant molecular features are seen with Au electrodes. Our work should open a new path to the conductance measurements of single-molecule junctions with oxygen linkers.

Prediction of Ultra-High ON/OFF Ratio Nanoelectromechanical Switching from Covalently Bound $C_{60}$ Chains

  • Kim, Han Seul;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.645-645
    • /
    • 2013
  • Applying a first-principles computational approach combining density-functional theory and matrix Green's function calculations, we have studied the effects [2+2] cycloaddition olligormerization of fullerene $C_{60}$ chains on their junction charge transport properties. Analyzing first the microscopic mechanism of the switching realized in recent scanning tunneling microscope (STM) experiments, we found that, in agreement with experimental conclusions, the device characteristics are not significantly affected by the changes in electronic structure of $C_{60}$ chains. It is further predicted that the switching characteristics will sensitively depend on the STM tip metal species and the associated energy level bending direction in the $C_{60}-STM$ tip vacuum gap. Considering infinite $C_{60}$ chains, however, we confirm that unbound $C_{60}$ chains with strong orbital hybridizations and band formation should in principle induce a much higher conductance state. We demonstrate that a nanoelectromechanical approach in which the $C_{60}-STM$ tip distance is maintained at short distances can achieve a metal-independent and drastically improved switching performance based on the intrinsically better electronic connectivity in the bound $C_{60}$ chains.

  • PDF

Hydrogen-bonded Molecular Network of Anthraquinone on Au(111)

  • Kim, Ji-Yeon;Yoon, Jong-Keon;Park, Ji-Hun;Kim, Ho-Won;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.107-107
    • /
    • 2011
  • Supramolecular structures of anthraquinone molecules on a metallic surface are studied using scanning tunneling microscope (STM) under ultrahigh-vacuum conditions. When we deposited anthraquinone molecules on Au(111) substrate, the molecules formed three different phases (Chevron type, tetragon type and disordered type) on the surface. Based on our STM measurements, we proposed models for the observed molecular structures. Chevrons are consisted of several molecular chains, which make well-ordered two-dimensional islands by some weak interrow interactions and we could observe tetragon structures which make array of (111) metallic surface. each molecular rows in the chevrons are stabilized by two parallel O-H hydrogen bonds and disordered structures are observed 1-dimensional phase with hydrogen bond. First-principles calculations based on density functional theory are performed to reproduce the proposed models. Distances and energy gains for each intermolecular bond are estimated. In this presentation, we explain possible origins of these molecular structures in terms of hydrogen bonds, Van der Waals interactions and molecule-substrate interactions.

  • PDF

Inter-Chain Interactions in Arrays of Metal-Organic Hybrid Chains on Ag(111)

  • Park, Ji-Hun;Jeong, Gyeong-Hun;Yun, Jong-Geon;Kim, Ho-Won;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.302-302
    • /
    • 2011
  • Fabrications of metal-organic hybrid networks attracted much attention due to possible applications in gas storages, heterogeneous catalyses, information storages, and opto-electronic devices. One way to construct three-dimensional hybrid structures is to make the arrays of planar or linear metal-organic hybrid structures which are linked through electrostatic interactions. As a model study, we fabricated the arrays of one-dimensional hybrid chains and investigated inter-chain interactions between adjacent hybrid chains using scanning tunneling microscopy (STM) and spectroscopy (STS) on Ag(111). Brominated anthracene molecules were used to grow the arrays of hybrid chains on Ag(111). We proposed atomic models for the observed structures. Linear chains are made of repetition of Ag-anthracene units. Br atoms are attached to anthracene molecules through Br-H structures which mediate inter-chain interactions. Two different apparent heights were observed in anthracene molecules. Molecules having a Br-H connection look brighter than those with two connections due to electronic effect. When a chain is laterally manipulated with STM tip, Br atoms move together with the chain implying that Br-H inter-chain interactions are quite strong.

  • PDF

In Situ Scanning Tunneling Microscope of Cyanide and Thiocyanate Adsorption on Pt(111)

  • Yau, Shueh-Lin;Kim, Youn-Geun;Itaya, Kingo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.723-730
    • /
    • 1995
  • Cyclic voltammetry and in situ STM were employed to examine the interfacial structures of a Pt(111) electrode in 0.1 mM KCN (pH9.5) and 0.1 mM KSCN (pH7) solutions. In situ STM atomic resolution revealed well ordered (2${\surd}$3${\times}$2${\surd}$3)$R30^{\circ}$-6CN and ($2{\times}2$)-2SCN structures within the double layer charging region. Six CN adsorbates formed a hollow hexagon, which embraced a coadsorbed $K^+$ cation. In contrast, the coadsorbed $K^+$ cations on the SCN covered Pt(111) were poorly ordered, despite adsorbed SCN formed a long range ordered ($2{\times}2$)-2SCN adlattice. In situ STM revealed the pronounced influence of potential in controlling the structures of compact layers at the proximity of a Pt electrode. Cathodic polarization facilitated the replacement of the coadsorbed cations by protons.

  • PDF

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF