• Title/Summary/Keyword: Scanning probe

Search Result 588, Processing Time 0.027 seconds

Development of Nanoscale Thermoelectric Coefficient Measurement Technique Through Heating of Nano-Contact of Probe Tip and Semiconductor Sample with AC Current (탐침의 첨단과 반도체 시편 나노접접의 교류전류 가열을 통한 나노스케일 열전계수 측정기법 개발)

  • Kim, Kyeongtae;Jang, Gun-Se;Kwon, Ohmyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.41-47
    • /
    • 2006
  • High resolution dopant profiling in semiconductor devices has been an intense research topic because of its practical importance in semiconductor industry. Although several techniques have already been developed. it still requires very expensive tools to achieve nanometer scale resolution. In this study we demonstrated a novel dopant profiling technique with nanometer resolution using very simple setup. The newly developed technique measures the thermoelectric voltage generated in the contact point of the SPM probe tip and MOSFET surface instead of electrical signals widely adopted in previous techniques like Scanning Capacitance Microscopy. The spatial resolution of our measurement technique is limited by the size of contact size between SPM probe tip and MOSFET surface and is estimated to be about 10 nm in this experiment.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Measurements of Evanescent Wave using a Mano-size Optical Probe (나노 사이즈 광프로브에 의한 에버네슨트파의 측정)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • We have carried out a basic experiment in order to develope a super high-resolution optical microscope which transcend the limitation of diffraction and the wavelength of lightwave. The image of this scope is composed by measuring the evanescent wave which is localized on the surface of the testing materials. A detecting probe was fabricated with a single mode optical fiber to be sharpened by the chemical etching, and drived by PZT. The standing wave of $0.33\mu\textrm{m}$ wavelength evanescent wave which was generated from the $0.78\mu\textrm{m}$-wavelength semiconductor laser was detected by the $0.5\mu\textrm{m}$-thickness optical fiber probe.

A Study of the Acoustic Microscope System by Large Aperture Probe (대구경 탐촉자를 이용한 초음파 현미경 시스템 연구)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.475-479
    • /
    • 2003
  • Traditional ultrasonic evaluation to detect micro/small surface cracks is the pulse-echo technique using the normal immersion transducer with high frequency, or the angle beam transducer with surface wave. It is difficult to make the automatic ultrasonic system that is to detect micro and small surface crack and position on the large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of transducer. The aim of this study using the high precision scanning acoustic microscope with 10MHz large aperture transducer was to display the real time A, B, C-scan for the automatic ultrasonic system in order to detect the existence and position of surface crack. The ultrasonic method with large aperture transducer was improved the scanning time and speed over 10times faster than traditional methods.

Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat (자동차 시트용 탄소섬유 발열체의 전기적 및 저항 발열 특성)

  • Choi, Kyeong-Eun;Park, Chan-Hee;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this paper, the electrical and resistance heating properties of carbon fiber heating elements with different electroless Ni-P plating times for car seat were studied. The specific resistance and specific heat of the carbon fibers were determined using 4-point probe method and differential scanning calorimetry (DSC), respectively. The surface morphology and temperature of carbon fibers were measured by scanning electron microscope (SEM) and thermo-graphic camera, respectively. From experimental results, the nickel layer thickness and surface temperature of carbon fibers increased with increasing the plating time. However, the specific heat and specific resistance decreased with respect to the increased plating time. In conclusion, the electroless Ni-P plating could improve the resistance heating and electrical properties of carbon fiber heating elements for car seat.