• 제목/요약/키워드: Scanning electrochemical microscopy

Search Result 397, Processing Time 0.024 seconds

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh;Bonyadi, Sepideh
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

Electrochemical Studies on Corrosion Inhibition Behaviour of Synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and Its Tin(IV) Complex for Mild Steel in 1 M HCl Solution

  • Hazani, Nur Nadira;Mohd, Yusairie;Ghazali, Sheikh Ahmad Izaddin Sheikh Mohd;Farina, Yang;Dzulkifli, Nur Nadia
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Corrosion inhibition by synthesised ligand, 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc) and its tin(IV) complex, dichlorobutyltin(IV) 2-acetylpyridine 4-ethyl-3-thiosemicarbazone ($Sn(HAcETSc)BuCl_2$) on mild steel in 1 M hydrochloric acid (HCl) was studied using weight loss measurement, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The inhibition efficiency increases by increasing the inhibitor concentrations. The polarisation study showed that both synthesised compounds were mixed type inhibitors. The electrochemical impedance study showed that the presence of inhibitors caused the charge transfer resistance to increase as the concentration of inhibitors increased. The adsorption of these compounds on mild steel surface was found to obey Langmuir's adsorption isotherm with the free energy of adsorption ${\Delta}G{^o}_{ads}$ of -3.7 kJ/mol and -7.7 kJ/mol for ligand and complex respectively, indicating physisorption interaction between the inhibitors and 1 M HCl solution.

Photoluminescence Tuning of Porous Silicon by Electrochemical Etching in Mixed Electrolytes

  • Lee, Ki-Hwan;Jeon, Ki-Seok;Lee, Seung-Koo;Choi, Chang-Shik
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • We have systematically studied the evolution of the photoluminescence(PL) tuning of porous silicon(PS) by electrochemical etching in various mixed electrolytes. The electrolytes employed as an etchants were mixtures of HF:CH$_3$COOH:HNO$_3$:C$_2$H$\_$5/OH solutions where the composition ratios (%) were varied from 10:1.98:0:88.02 to 10: 1.98:8.4:79.62 under constant concentration of HF and CH$_3$COOH with a total volume of 100 ml. Changes in the surface morphology of the samples caused by variations in the etching process were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). After samples are etched in various mixed electrolytes, FTIR analyses show that there is the non-photoluminescent state and the photoluminescent state simultaneously. The PL spectra show the PL tuning in the ranging from 560 to 700 nm with the increase of HNO$_3$ concentration. An analysis of the subsequent PL relaxation mechanism was carried out by time-correlated single photon counting (TCSPC) method. Based on experimental results, it is assumed that a red shift of the main PL peak position is related to the HNO$_3$ activated formation of silicon oxygen compounds. Therefore, the use of electrolyte mixtures with composition ratios can be obtained adequate and reproducible results for PL tuning.

  • PDF

Improved Tri-iodide Reduction Reaction of Co-TMPP/C as a Non-Pt Counter Electrode in Dye-Sensitized Solar Cells

  • Kim, Jy-Yeon;Lee, Jin-Kyu;Han, Sang-Beom;Lee, Young-Woo;Park, Kyung-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • We report Co-tetramethoxyphenylporphyrin on carbon particles (Co-TMPP/C) as a non-Pt catalyst for tri-iodide reduction in dye-sensitized solar cells (DSSCs). The presence of well-dispersed carbon and cobalt source in the catalyst surface is confirmed by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis. In the C 1s, Co 2p, and N 1s peaks measured by X-ray photoelectron spectroscopy, the C-N, Co-$N_4$, and N-C are assigned to the component at 285.7, 781.8, and 401 eV, respectively. Especially, the Co-TMPP/C shows improved current density, diffusion coefficient, and charge-transfer resistance in the ${I_3}^-/I^-$ redox reaction compared to conventional catalysts. Furthermore, in the DSSCs performance, the Co-TMPP/C shows increased short circuit current density, higher open circuit voltage, and improved cell efficieny in comparison with Pt/C.

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning

  • Nam, Yun-Chae;Lee, Seon-Jin;Kim, Hae-In;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.

Microstructure and Corrosion Characteristics of Austenitic 304 Stainless Steel Subjected to Long-term Aging Heat Treatment (장시간 시효 열처리된 오스테나이트계 304강의 미세조직과 부식 특성)

  • Huh, ChaeEul;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2022
  • The electrochemical corrosion properties of austenitic AISI 304 steel subjected to a long-term-aging heat treatment were investigated. AISI 304 steel was aged at 700 ℃ for up to 10,000 h. The variation in the microstructure of the aged specimens was observed by optical microscopy and scanning electron microscopy. Electrochemical polarization experiments were performed to obtain the corrosion current density (Icorr) and corrosion potential (Ecorr). Analyses indicated that the metastable intermetallic carbide M23C6 formed near the γ/γ grain boundary and coarsened with increasing aging time; meanwhile, the δ-ferrite decomposed into the σ phase and into M23C6 carbide. As the aging time increased, the current density increased, but the corrosion potential of the austenitic specimen remained high (at least 0.04 ㎛/cm2). Because intergranular carbide was absent, the austenitic annealed specimen exhibited the highest pitting resistance. Consequently, the corrosion resistance of austenitic AISI 304 steel decreased as the aging heat treatment time increased.

Insights into the corrosion inhibition of steel rebar in chloride-contaminated synthetic concrete pore solutions by a new hydrazone (새로운 히드라존에 의한 염화물 오염 합성 콘크리트 공극 솔루션에서 철근의 부식 억제에 대한 통찰력)

  • Lgaz, Hassane;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.101-102
    • /
    • 2022
  • A new hydrazone derivatives namely (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HIND) has been confirmed for mitigating the corrosion of the steel rebar exposed to chloride contaminated synthetic concrete pore solution (ClSCPS). The mitigation of corrosion properties has been characterized by weight loss and electrochemical methods (Electrochemical impedance, Potentiodynamic polarization studies) as well as surface observations. The presence of HIND in the ClSCPS decreased the corrosion of steel rebar by adsorption of HIND molecules on the surface of the steel rebar. The optimal HIND concentration was 0.5 mmol/L, corresponding to an inhibition efficiency of 88.4%. The use of HIND enables the corrosion process to have a higher energy barrier. X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) spectroscopy interpretations confirmed that HIND mitigates the corrosion attack on the surface steel rebar.

  • PDF

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.