• Title/Summary/Keyword: Scanning Tunneling Microscopy(STM)

Search Result 114, Processing Time 0.017 seconds

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

Adsorption Stnlctures of Benzene and Pyridine on a $Si(5\;5\;12)-2{\times}1$ ($Si(5\;5\;12)-2{\times}1$ 표면에 벤젠과 피리딘의 결함구조)

  • Jang S. H.;Oh S.;Hahn J. R.;Jeong H.;Jeong S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2006
  • We investigated the adsorption of benzene and pyridine on $Si(5\;5\;12)-2\times1$ at 80 K by using variable-low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The benzene molecule most strongly binds to two adatoms on the D3 and D2 units in a tilted butterfly configuration, which consists of $di-\sigma$ bonds between C atoms and Si adatoms and two C=C double bonds in the benzene molecule Pyridine molecules interact with adatom(s) on the D2 and D3 units through both Si-N dative bonding and $di-\sigma$ bonds. The dative bonding through the lone pair electrons of N atom produces a vertical configuration (pyridine-like), which is more stable than $di-\sigma$ bonds $Di-\sigma$ bonds can be formed either through Si-N1 and Si-C4 or Si-C2 and Si-C5.

EC-STM Studies on Electrochemical Preparation of Si(111)-H Surfaces (Si(111)-H 표면의 전기화학적 제조에 관한 전기화학적 주사터널링현미경법 연구)

  • Bae, Sang-Eun;Lee, Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.111-116
    • /
    • 2002
  • Electrochemical scanning tunneling microscopy was employed to study the evolution of surface morphology during electrochemical preparation of Si(111)-H from Si(111) oxide. Anodic dark current of cyclic voltammogram in 0.2M $NH_4F$ solution (pH 4.7) decreased as the number of cycles increased and remained nearly constant after the second cycle. Then, the Si(111) oxide was entirely stripped, which was followed by H termination on the Si(111) surface. Hydrides at kink and step sites were etched more rapidly than on the terrace, which remained triangle pits with [112] oriented steps where existed stable monohydride. Then, triangle pits deepened. During chronomamperometry at 0.4V anodic dark current shoulder appeared and decreased slowly, indicated the stripping of Si(111) oxide and the formation of stable (112) oriented steps with monohydride. Additionally, the etching mechanism of Si(111)-H in 0.2M $NH_4F(pH 4.7)$ solution at +0.4V was discussed.

Reconstruction Change of Si(5 5 12) Induced by Selective Bi Adsorption (Bi의 선택적 흡착으로 유도된 Si(5 5 12) 표면의 재구조변화)

  • Cho Sang-Hee;Seo Jae-M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.152-161
    • /
    • 2006
  • In order to test the capacity of Si(5 5 12) as a potential template for nanowire fabrication, Bi/Si(5 5 12) system has been studied by STM. With Bi deposition, Si(5 5 12) has been transformed to Si(3 3 7) terrace. Initially Bi atoms selectively replace Si-dimers and Si-adatoms with Bi-dimers and Bi-adatoms, respectively. With extended Bi adsorption, Bi-dimers adsorb on the pre-adsorbed Bi-dimers and Bi-atoms. These dimers in the second layer form Bi-dimer pairs having relatively stable $p^3$ bonding, Finally, the Bi-dimer adsorbs on the Bi-dimers in the second layer and saturates. It can be deduced that both surface transformation to (3 3 7) and site-selective Bi adsorption are possible due to substrate-strain relaxation through inserting Bi atoms into subsurface of Si substrate.