• 제목/요약/키워드: Scanning Laser Beam

검색결과 203건 처리시간 0.02초

공정변수에 따른 레이저표면합금층의 형상 및 성분변화에 관한 연구 (Shape and Chemical Composition of Laser Surface Alloyed Layer under Moving Laser Source)

  • 최정영;이창희
    • 한국레이저가공학회지
    • /
    • 제2권2호
    • /
    • pp.8-17
    • /
    • 1999
  • This study includes a basic feature of laser surface alloying for enhancing the surface properties of materials. Effects of laser processing parameters such as beam power, beam size, scanning speed on the shape and composition of alloyed layer was simulated in case of moving beam conditions (2-dimensional numerical methods). Simulated results were compared with experiments, in which the plasma coating of 80% Ni + 20% Cr deposited on the SS41 substrate was remelted with CO2 laser with Gaussian energy distribution. Simulation and experiments revealed that the shape (dimension)and composition of laser alloyed layer were strongly dependent upon the process parameters, especially interaction time (travel speed) as compared to beam diameter, beam power and absorptivity. The shape and composition of alloyed layervaried more or less exponentially with parameters.

  • PDF

MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

  • Kim, Hyun-Gil;Kim, Il-Hyun;Jung, Yang-Il;Park, Dong-Jun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.521-528
    • /
    • 2014
  • The surface modification of engineering materials by laser beam scanning (LBS) allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS) structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and $Y_2O_3$ particles of $10{\mu}m$ were selected for ODS treatment using LBS. Through the LBS method, the $Y_2O_3$ particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at $500^{\circ}C$ was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive $Y_2O_3$ particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

전자계산기 홀로그램을 이용한 레이저 주사장치 (Laser Scanner Using a Computer-Generated Hologram)

  • 윤희철;이종창;장주석;신상영
    • 대한전자공학회논문지
    • /
    • 제23권2호
    • /
    • pp.257-263
    • /
    • 1986
  • A laser scanner utilizing a computer-generated hologram(CGH) as beam deflector is reported. The CGH optical element has been used mainly for under-filled scanning. Here, a CGH optical element for overfilled scanning is proposed. It can achieve, under the same limitation of fabrication accuracy, better resolution and longer scan length than those for under-filled scanning. Measured scanning characteristics of the laser scanner show the scan length of 40 cm and the beam diameter of 100\ulcorner, where the designed minimum distance between the lines of CGH is 8\ulcorner.

  • PDF

Nd:YVO4 Laser Patterning of Various Transparent Conductive Oxide Thin Films on Glass Substrate at a Wavelength of 1,064 nm

  • Wang, Jian-Xun;Kwon, Sang Jik;Cho, Eou Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.59-62
    • /
    • 2013
  • At an infra-red (IR) wavelength of 1,064 nm, a diode-pumped Q-switched $Nd:YVO_4$ laser was used for the direct patterning of various transparent conductive oxide (TCO) thin films on glass substrate. With various laser beam conditions, the laser ablation results showed that the indium tin oxide (ITO) film was removed completely. In contrast, zinc oxide (ZnO) film was not etched for any laser beam conditions and indium gallium zinc oxide (IGZO) was only ablated with a low scanning speed. The difference in laser ablation is thought to be due to the crystal structures and the coefficient of thermal expansion (CTE) of ITO, IGZO, and ZnO. The width of the laser-patterned grooves was dependent on the film materials, the repetition rate, and the scanning speed of the laser beam.

주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현 (Realization for Each Element for capturing image in Scanning Electron Microscopy)

  • 임선종;이찬홍
    • 한국레이저가공학회지
    • /
    • 제12권2호
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

주사 레이저 광집게를 위한 압전 구동기 주파수 특성 분석과 주사 경로 추적 및 보상 (Analysis of Frequency Response of Piezo Stages and Scanning Path Monitoring/Compensation for Scanning Laser Optical Tweezers)

  • 황선욱;이송우;이용구
    • 한국광학회지
    • /
    • 제19권2호
    • /
    • pp.132-139
    • /
    • 2008
  • 주사 레이저 광집게에서 대물렌즈에 의해 집속된 레이저 초점을 제어하기 위해 사용되는 고속 구동기는 입력 신호의 주파수가 증가함에 따라 출력이 감소한다. 이러한 입출력의 괴리는 CCD 카메라를 통해 관찰이 어려우며 사용자는 희미하게 보이는 레이저 주사 형상을 보고 물체를 조작하여 물체를 포획할 수 없거나 포획하더라도 안정된 제어를 할 수 없다. 본 연구에서는 이러한 문제를 해결하기 위해 사용된 고속 구동기의 주파수 특성을 분석하고, 이를 바탕으로 입력 주파수에 따른 실제 주사 경로를 측정하여 시각화해주는 방법과 입출력 데이터의 차이를 계산하여 입력 데이터를 보상하는 방법을 제안한다.

Four-beam Interference Optical System for Laser Micro- structuring Using Picosecond Laser

  • Noh, Ji-Whan;Lee, Jae-Hoon;Shin, Dong-Sig;Sohn, Hyon-Kee;Suh, Jeong;Oh, Jeong-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.75-79
    • /
    • 2009
  • A four beam interference optical system for laser micro structuring using a pulse laser was demonstrated. The four beam interference optical system using a pulse laser(picosecond laser) can fabricate micro structure on mold material(NAK80) directly. Micro structure on the polymer can be reproduced economically by injection molding of the micro structure on the mold material. The four beam interference optical system was composed by the DOE(Diffractive Optical Element) and two lenses. The laser intensity distribution of four beam interference was explained by an interference optics point of view and by the image optics point of view. We revealed that both views showed the same result. The laser power distribution of a $1{\mu}m$ peak pattern was made by the four beam interference optical system and measured by the objective lens and CCD. A $1{\mu}m$ pitch dot pattern on the mold material was fabricated and measured by SEM(Scanning Electron Microscopy).

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

용접자동화를 위한 주사빔을 이용한 시각센서에 관한 연구 (A Study on the Vision Sensor Using Scanning Beam for Welding Process Automation)

  • 유원상;나석주
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.891-900
    • /
    • 1996
  • The vision sensor which is based on the optical triangulation theory with the laser as an auxiliary light source can detect not only the seam position but the shape of seam. In this study, a vision sensor using the scanning laser beam was investigated. To design the vision sensor which considers the reflectivity of the sensing object and satisfies the desired resolution and measuring range, the equation of the focused laser beam which has a Gaussian irradiance profile was firstly formulated, Secondly, the image formaing sequence, and thirdly the relation between the displacement in the measuring surface and the displacement in the camera plane was formulated. Therefore, the focused beam diameter in the measuring range could be determined and the influence of the relative location between the laser and camera plane could be estimated. The measuring range and the resolution of the vision sensor which was based on the Scheimpflug's condition could also be calculated. From the results mentioned above a vision sensor was developed, and an adequate calibration technique was proposed. The image processing algorithm which and recognize the center of joint and its shape informaitons was investigated. Using the developed vision sensor and image processing algorithm, the shape informations was investigated. Using the developed vision sensor and image processing algorithm, the shape informations of the vee-, butt- and lap joint were extracted.

레이저 진동 측정기를 이용한 초음파 이송 시스템의 동작특성에 관한 연구 (A Study on the Motion Characteristics of the Ultrasonic Transport System using Laser Scanning Vibrometer)

  • 정상화;신병수;이경형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.155-158
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF