• Title/Summary/Keyword: Scandium porphyrin

Search Result 2, Processing Time 0.013 seconds

Development of a Fluoride-Selective Electrode based on Scandium(III) Octaethylporphyrin in a Plasticized Polymeric Membrane

  • Kang, Young-Jea;Lutz, Christopher;Hong, Sung-A;Sung, Da-Yeon;Lee, Jae-Seon;Shin, Jae-Ho;Nam, Hak-Hyun;Cha, Geun-Sig;Meyerhoff, Mark E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1601-1608
    • /
    • 2010
  • A scandium(III) porphyrin-based fluoride-selective potentiometric sensor and its application in the analysis of hydrofluoric acid is described. Scandium(III) octaethylporphyrin, an ionophore recently developed for the optical fluoride sensor, was employed as a host molecule for the selective binding with fluoride in the plasticized PVC membrane. Nernstian response for $F^-$ between $10^{-4.6}$ to $10^{-1}$ M was observed at a glycine-phosphate buffer (pH 3.0). The selectivity pattern was observed as $F^-$, salicylate $\gg$ $SCN^-$ > $Cl^-$, $Br^-$, $NO_3{^-}$, $ClO_4{^-}$, which is consistent with the binding constant data measured in the plasticized PVC membrane based on a sandwich membrane method. This highly selective and reversible fluoride-sensitive electrode was employed for the analysis of hydrofluoric acid (HF). A disposable differential-type HF sensor was fabricated on the screen-printed electrode and demonstrated its ability to detect the neutral HF in the acidic solution.

Stability and Electronic Properties of the Adsorption of Molecular Hydrogen on Metal-containing Single-walled Carbon Nanotubes

  • Michael, Mananghaya
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.429-433
    • /
    • 2015
  • The binding ability and hydrogen storage capacity of nitrogen doped carbon nanotube with divacancy (4NDCNxNT) that is decorated with transition metals was investigated based on density functional theory calculations. Results indicate that scandium shows an ideal reversible hydrogen binding capability with promising system-weight efficiency compared with other transition metals when functionalized with 4ND-CNxNT. The (Sc/4ND)10-CNxNT can store up to 50H2 molecules, corresponding to a maximum gravimetric density of 5.8 wt%. Detailed structural stability and electronic properties were reported as hydrogen molecules were absorbed. It takes about 0.16 eV/H2 to add one H2 molecule, which assures reversible storage of H2 molecules under ambient conditions.