• Title/Summary/Keyword: Scan velocity

Search Result 94, Processing Time 0.024 seconds

Identification of Impact Damage in Smart Composite Laminates Using PVDF Sensor Signals (고분자 압전센서 신호를 이용한 스마트 복합적층판의 충격 손상 규명)

  • Lee, Hong-Young;Kim, In-Gul;Park, Chan-Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.51-59
    • /
    • 2004
  • An experimental procedure to identify failure modes of impact damage using sensor signals and to analyze their general features is examined. A series of low-velocity impact tests from low energy to damage-induced high energy were performed on the instrumented drop weight impact tester to monitor the stress wave signals due to failure modes such as matrix cracking, delamination, and fiber breakage. The wavelet transform(WT) and Short Time Fourier Transform(STFT) are used to decompose the piezoelectric sensor signals in this study. The extent of the damage in each case was examined by means of a conventional ultrasonic C-scan. The PVDF sensor signals are shown to carry important information regarding the nature of the impact process that can be extracted from the careful signal processing and analysis.

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

Material Evaluation of Lead Die-Casted Positive Grid for Battery Using Nondestructive Evaluation Technique (연축전지 양극기판의 기계적 특성비교 분석 및 비 파괴 평가기법의 적용)

  • Kim, Hui-Jung;Lee, Min-Rae;Lee, Jun-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1709-1718
    • /
    • 2002
  • It is well recognized that improving capacity of positive grid in battery is one of key factors for controlling the expected long lift-time of Battery Energy Storage System(B.E.S.S). Thus it is really important to characterized material properties of positive grid which are mainly affected by fabrication process. In this study, two kinds of positive grids, which were fabricated by gravity casting and die-casting technique were used. Micro-structural observation and tensile test were conducted to investigate the effect of fabrication process of positive grid. Ultrasonic measurement based on pulse-echo method and ultrasonic C-scan technique also performed to correlate ultrasonic velocity with porosity ratio in positive grid. It was found that the porosity ratio of grid fabricated by gravity casting technique increased significantly compared to the grid fabricated by die-casting technique. It was also shown that ulrasonic technique is effective to evaluate the porosity ratio in positive grid.

MR Line Scan Angiography using Spectral Analysis

  • Jung, Kwan-Jin;Ro, Yong-Man;Sim, Bog-Tae;Ra, Jong-Beom;Cho, Zang-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.27-28
    • /
    • 1989
  • In conventional line scan angiography, flow signal has been enhanced by the time_of_flight effect while the signal from stationary tissues has been suppressed by the saturation rf pulse followed by spoiling gradients. Due to the inhomogeneous rf field and the tissue dependent T1 relaxation time, however, stationary tissues can not be suppressed completely or uniformly, and the remnant stationary signal deteriorates the resultant angiogram. Here, the complete cancellation of stationary tissues is made possible by the spectral analysis of a series of repetitive line images of the same slice. The Fourier transformation of a set of line images results in the spectrum images, where stationary tissues are collected into the dc component while arteries are included in harmonic components because of the variation of the flow velocity and the resultant flow signal in arteries according to the cardiac cycle. The summation of harmonic components excluding the dc component results in the angiogram of arteries with the complete cancellation of stationary tissues.

  • PDF

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

DETECTION OF MICROSCOPIC BEHAVIOR OF LOW VELOCITY IMPACT DAMAGED CFRP LAMINATE UNDER TENSILE LOADING BY ELASTIC WAVES (탄성파 응용기술에 의한 CFRP 복합재료의 저속충격 손상역의 미시적 거동 특성 탐지)

  • 이준현;권오양;이승석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.650-655
    • /
    • 1993
  • Carbon/epoxy composite(CFRP) coupons previously damaged by low velocity impact were tested under static tensile loading and microscope progress of damage was characterized by ultrasonic C-scan, Scanning Acoustic Microscopy (SAM) and Acoustic Emission(AE) techniques which were based on the application of elastic waves. The degress of impact damage has been correlated with the AE activity during monotonic or loading/unloading tensile testing as well as the result of ultrasonic test. The coupons were subjected to impact velocities ranged from 0.71 to 2.17 m/sec, which introduced the amount of damage rated as 0%, 10%, 30%, and 50% with reference to the total absorbed energy at fracture. Special attention was paid to determine optimal AE parameters to characterize the microscopic fracture process and to predict the residual strength of composite laminates. AE RMS voltage during the early stage of tensile loading was found an effective parameter to quantify the degree of impact damage. It was also found that the Felicity ratio is closely related to the stacking sequence and the residual strength of the CFRP laminates.

  • PDF

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

A Study of the Chewing Patterns in Patients with Temporomandibular Disorders by Electrognathography (Electrognathography를 이용한 측두하악장애환자의 저작양태에 관한 연구)

  • Moon-Gyu Kim;Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.2
    • /
    • pp.291-306
    • /
    • 1995
  • Mandibular movement is composed of border movement and functional movement. Border movement such as maximal mouth opening, hinge opening ad lateral eccentric movement has good reproducibility, but functional movement such as chewing, swallowing and speech has also reproducibility. Especially for chewing movement, individual reproducibility has been confirmed by many studies. Study of chewing pattern is still in controversy. In new approach for raising the diagnostic value, numeric parameters and morphologic characteristics could be used for evaluation of chewing pattern. This study was performed to investigate the differences between chewing pattern in controls and in patients with temporomandibular disorders. Sixty-three patients with temporomandibular disorders participated in this study, and they were divided into unilaterally affected subjects or bilaterally affected subjects. Then unilaterally affected subjects were classified into closed lock group, disk displacement with reduction group, and degenerative joint disease group. For recording of chewing pattern, subjects were asked to chew one piece of presoftened chewing gum on both sides, and the chewing movement was recorded with the Electrognatho- Graphy(Bio-Research Associates Inc., U.S.A.). Tooth contact pattern for occlusal stability (Total left-right statistics )was also recorded with T-Scan(Tekscan Co., U.S.A.). The dta related to chewing pattern and total left-right statistics were statistically analyzed by SAS/stat program. The obtained results were as follows : 1. In patient group, mean value of A-P distance and the ratio of A-P distance to vertical distance were larger than control group, but the value of lateral distance in affected side and the closing velocity in unaffected side were smaller than that of control group, respectively. 2. In case of unilateral affected patients, chewing pattern of other side had tendency to restricted movement and slow velocity in closed lock group or degenerative joint disease group than control group or disk displacement with reduction group. 3. In bilateral degenerative joint disease patients, contralateral side had tendency to large range of motion and slow chewing velocity than preferred chewing side. 4. The patients with restricted mouth opening below than 35mm had higher value of total left-right statistics than patient group mouth opening above 35mm. Also closed lock group had higher total left-right statistics than disk displacement with reduction group, degenerative joint disease group and control group. 5. There was some difference in morphologic characteristics of chewing pattern between in control group and in affected side of unilateral patient group, but no difference between control group and unaffected side of unilateral patient group. 6. There were positive correlations between vertical distance and A-P distance, between vertical distance and chewing velocity, between A-P distance and chewing velocity, and between opening velocity and closing velocity in unilateral affected patients.

  • PDF

A Study of False Contour Noise in Moving Images through Consideration of the Phosphor Decay Time of AC PDP

  • Jeong, Dong-Cheol;Moon, Cheol-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-17
    • /
    • 2007
  • The dynamic false contour noise was analyzed with consideration for the phosphor decay time of an ac PDP by computer simulation based on the measurement of the 1/10 phosphor decay times of the primary colors red, green and blue at the main wavelengths of each phosphor. The noise level of dynamic false contour is strongly dependent on phosphor decay time. The noise level decreases incrementally with the phosphor decay time, whereas the noise width increases. The moving velocity of an object does not affect the noise level. The entire experiment was performed under the condition of 8 subfields ADS driving scheme, 2.5[${\mu}sec$] scan speed, and 5[${\mu}sec$] sustain period with VGA grade panel.