• Title/Summary/Keyword: Scan body

Search Result 574, Processing Time 0.024 seconds

Development of Simple Articulated Human Models using Superquadrics for Dynamic Analysis

  • Lee, Hyun-Min;Kim, Jay-Jung;Chae, Je-Wook
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.715-725
    • /
    • 2011
  • Objective: This study is aimed at developing Articulated Human Models(AHM) using superquadrics to improve the geometric accuracy of the body shape. Background: The previous work presents the AHM with geometrical simplification such as ellipsoids to improve analysis efficiency. However, because of the simplicity, their physical properties such as a center of mass and moment of inertia are computed with errors compared to their actual values. Method: This paper introduces a three steps method to present the AHM with superquadrics. First, a 3D whole body scan data are divided into 17 body segments according to body joints. Second, superquadric fitting is employed to minimize the Euclidean distance between body segments and superquadrics. Finally, Fee-Form Deformation is used to improve accuracy over superquadric fitting. Results: Our computational experiment shows that the superquadric models give better accuracy of dynamic analysis than that of ellipsoid ones. Conclusion: We generate the AHM composed of 17 superquadrics and 16 joints using superquadric fitting. Application: The AHM using superquadrics can be used as the base model for dynamics and ergonomics applications with better accuracy because it presents the human motion effectively.

Lower Body Types Classification according to Waist and Thigh Shapes in Korean Woman in Their 20s (국내 20대 여성의 허리와 허벅지 형태에 따른 하반신 체형 분류)

  • Shin, Kayoung;Do, Wolhee
    • The Korean Fashion and Textile Research Journal
    • /
    • v.22 no.4
    • /
    • pp.495-503
    • /
    • 2020
  • This study classified lower body shape according to thigh and waist shape to improve the fit of skinny blue jeans in adult women in their 20s. We analyzed the three-dimensional automatic measurement data, three-dimensional indirect measurement data, and index data using the three-dimensional female (20-29 years old) body scan data provided by Size Korea (6th Korean Human Dimensional Survey Project). Factor analysis was performed to classify body type. We selected and analyzed 34 items related to thigh shape based on index items, angle items, and protrusion amount items from 99 items; consequently, seven factors were extracted and 82.39% of the total variance was explained. Cluster analysis according to factor analysis classified it into 4 types, and a post-test Duncan test was conducted to classify thigh features according to classified types. As a result, the characteristics of lower body shape according to the thigh types of women in their 20s are as follows. Lower Body Type 1 is shape with a more prominent belly and less prominent thighs. Lower Body Type 2 is a slender body figure with larger hips. Lower Body Type 3 has more prominent thighs compared to the waist and belly. Lower Body Type 4 has both a prominent belly and prominent thighs.

Classification of Torso Shapes of Women Aged 35-54 - Based on Measurements Extracted from the 8th Size Korea Scans - (35-54세 여성의 토르소 형태 분류에 관한 연구 - 제8차 Size Korea 인체형상으로부터 추출한 측정값을 이용하여 -)

  • Yu Rui;Eun Joo Ryu;Hwa Kyung Song
    • The Korean Fashion and Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.603-614
    • /
    • 2023
  • Body shape is the most influential factor in determining the quality of clothing fit. Women's body shape begins to change significantly in their mid-30s; therefore, this study aimed to classify and analyze the torso shapes of women aged 35-54 years. This study selected 200 3D body scans of women from the 8th Size Korea Survey database (2021). Using the Grasshopper algorithm developed in a previous study, 17 landmarks were automatically detected and 57 measurement values were generated. Using principal component analysis, 11 components (overall body size, upper body length, back protrusion, upper body slope, neck position, neck inclination, hip length, bust prominence, abdominal prominence, shoulder slope, and buttock prominence) were extracted. Three torso types were identified using K-means cluster analysis. The three body types were significantly different on nine component scores. Among the three torso types, Type 1 (37.5%) has the longest upper body and the flattest back and hips. Type 2 (31.0%) has the most curved back and forward upper body. Its abdomen is the flattest, and its shoulders are the most sloped. Type 3 (31.5%) has the shortest upper body, the most protruding hips, and the largest overall body size. This paper proposes two discriminant functions for identifying a new person's torso type.

Feasibility Study of Applying the Acrylic Assistant Equipment (ACR) to Reduce Patient's Discomfort in Lower Abdomen MRI Scan (하복부 MRI 검사 시 환자의 불편함을 줄이기 위한 아크릴 보조 장치 사용의 타당성 조사)

  • Park, Eunhye;Lee, Minsik
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.475-480
    • /
    • 2018
  • In lower abdominal MRI scan, patients have been tested by physically contacting with the body array coil. In this study, we have designed the acrylic assistant equipment (ACR) which allows the contactless scan of the patient to the coil and evaluated the feasibility by comparing the acquired images with ACR to those obtained without ACR. We tested 10 cases (F: 5, m: 5) by using the Ingenia $3.0T^{TM}$ MR system and dStreamTM torso coil (Philips Healthcare, Netherlands). We implemented T1 AX TSE and eTHRIVE (GRE) techniques. The scanned images were quantitatively and qualitatively assessed. In qualitatively, the TSE shows 4.44 and 4.56 mean values with and without the ACR and 4.34 and 4.28 at the GRE, respectively. In quantitatively, the TSE shows 12.15 CNR, 17.95 SNR and 12.71 CNR, 18.96 SNR with and without the ACR. And GRE shows 17.72 CNR, 22.59 SNR and 18.26 CNR, 24.47 SNR with and without the ACR, respectively. We have designed and implemented the acrylic assistant equipment to lower abdominal patients. Our data indicate that it is possible to obtain similar image qualities to current lower abdominal MRI scan without the physical contact to the patient.

Discovery of the Dmitri Donskoi ship near Ulleung Island(East Sea of Korea), using geophysical surveys (물리탐사기술을 이용한 침몰선 Dmitri Donskoi호 탐사)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.104-111
    • /
    • 2005
  • Dmitri Donskoi, the Russian cruiser launched in 1883, is known to have sunk near Ulleung Island (East Sea, Korea) on May 29, 1905, while it was participating in the Russo-Japanese War. In order to find this ship, information about its possible location was obtained from Russian and Japanese maritime historical records. The supposed location of the ship was identified, and we conducted a five-year geophysical survey from 1999 to 2003. A reconnaissance three-dimensional topographic survey of the sea floor was carried out using multi-beam echo sounder, marine magnetometer, and side-scan sonar. An anomalous body identified through the initial reconnaissance survey was identified by a detailed survey using a remotely operated vehicle, deep-sea camera, and the mini-submarine Pathfinder. Interpretation of the acquired data showed that the ship is hanging on the side of a channel, at the bottom of the sea 400 m below sea level. The location is about 2 km from Port Jeodong, Uleung Island. We discovered 152 mm naval guns and other war materiel still attached to the hull of the ship. In addition, the remnants of the steering gear and other machinery that were burnt during the final action were found near the hull. Strong magnetic fields, resulting from the presence of volcanic rocks in the survey area, affected the resolution of the magnetic data gathered; as a result, we could not locate the ship reliably using the magnetic method. Severe sea floor topography in the gully around the hull gave rise to diffuse reflections in the side-scan sonar data, and this prevented us from identifying the anomalous body with the side-scan sonar technique. However, the sea-floor image obtained from the multi-bean echo sounder was very useful in verifying the location of the ship.

Analysis of the Spatial Dose Rates According to the Type of Radiation Source Used in Multi-bed Hospital Room (다인병실에서 이용되는 방사선원의 종류에 따른 공간선량률 분석)

  • Jang, Dong-Gun;Kim, Junghoon;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.407-413
    • /
    • 2017
  • Medical radiation offers significant benefits in diagnosing and treating patients, but it also generates unnecessary radiation exposure to those nearby. Accordingly, the objective of the present study was to analyze spatial dose rate according to types of radiation source term in multi-bed hospital rooms occupied by patients and general public. MCNPX was used for geometric simulation of multi-bed hospital rooms and radiation source terms, while the radiation source terms were established as whole body bone scan patients and imaging using a portable X-ray generator. The results of simulation on whole body bone scan patients showed $3.46{\mu}Sv/hr$ to another patient position, while experimental results on imaging using a portable X-ray generator showed $1.47{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in chest imaging and $2.97{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in abdomen imaging. Multi-bed hospital room, unnecessary radiation generated in the surrounding patients, while legal regulations and systematic measures are needed for radiation exposure in multi-bed hospital rooms that are currently lacking in Korea.

Assessment of the Effective Dose to the Human Body and Estimation of Lifetime Attributable Risk by CT Examination (CT 검사별 노출되는 유효선량과 생애 암 귀속 위험도 평가)

  • Cho, Yong In;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2020
  • The number of CT scans is increasing every year due to the improvement of the medical standards of the public, and thus the annual dose of medical radiation is also increasing. In this study, we evaluated the effective dose of the human body exposed to CT scans and estimated LAR. First, five region were selected from the CT diagnostic reference level guideline, and the effective dose of human body exposed to each examination was evaluated by clinical CT device. Second, the human organs and effective dose were calculated using the ALARA-CT program under the same conditions. Third, lifetime attributable risk (LAR) estimated by the effective dose exposed through the previous CT scan was estimated. As a result, the most effective dose was 21.18 mSv during the abdomen 4 phase scan, and the dose level was below DRL for all other tests except for the abdominal examination. As a result of evaluating effective dose using a dose calculation program under the same conditions, the results showed about 1.1 to 1.9 times higher results for each examination. In the case of organ dose, the closer the organ to the scan site, the higher the scattering ray. The lifetime attributable risk to CT radiation dose in adults was gradually decreased with age, and the results were somewhat different according to gender.

A Study on the Use of Contrast Agent and the Improvement of Body Part Classification Performance through Deep Learning-Based CT Scan Reconstruction (딥러닝 기반 CT 스캔 재구성을 통한 조영제 사용 및 신체 부위 분류 성능 향상 연구)

  • Seongwon Na;Yousun Ko;Kyung Won Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.293-301
    • /
    • 2023
  • Unstandardized medical data collection and management are still being conducted manually, and studies are being conducted to classify CT data using deep learning to solve this problem. However, most studies are developing models based only on the axial plane, which is a basic CT slice. Because CT images depict only human structures unlike general images, reconstructing CT scans alone can provide richer physical features. This study seeks to find ways to achieve higher performance through various methods of converting CT scan to 2D as well as axial planes. The training used 1042 CT scans from five body parts and collected 179 test sets and 448 with external datasets for model evaluation. To develop a deep learning model, we used InceptionResNetV2 pre-trained with ImageNet as a backbone and re-trained the entire layer of the model. As a result of the experiment, the reconstruction data model achieved 99.33% in body part classification, 1.12% higher than the axial model, and the axial model was higher only in brain and neck in contrast classification. In conclusion, it was possible to achieve more accurate performance when learning with data that shows better anatomical features than when trained with axial slice alone.

A Comparative Analysis of the Different between CLO 3D Avatar Sizing and Actual Body Measurement Shapes (CLO 3D 아바타 사이징과 실제인체간의 치수 및 형태 차이 비교 분석)

  • Lee, Min-Jeong;Sohn, Hee-Soon
    • Journal of Fashion Business
    • /
    • v.16 no.4
    • /
    • pp.137-151
    • /
    • 2012
  • This study aims to use the avatar sizing system of the 3D apparel CAD program instead of the existing 3D body scanners, and to commercialize 3D personal avatars. Towards these ends, the study examined a difference between a 3D avatar and actual body was determined to verify the 3D avatar sizing system. For the experiment, three subjects were selected, were measured as they were, and were made to undergo 3D body scanning and photographing. Then, using avatar sizing system on the 3D apparel CAD program, three types of virtual bodies, namely 3D avatars. The 3D avatar and actual body measurements were compared, and 3D avatars and 3D body-scanned shapes were likewise compared. As a result, the three types of actual bodies and their 3D avatars that were created based on the sizing system of the 3D apparel CAD program were overall similar. but, the thin body-YY type and the normal body-A type were different from their avatars. In the case of type B, who had a bulging abdomen, the 3D avatar was bigger than the actual body as measured. Also, in all body shapes, the girths around the chest, waist and abdomen were produced with exaggerated muscular amounts compared to their actual muscular amounts.

Comparison of Virtual Avatars by Using Automatic and Manual Method

  • Lim, Ho-Sun;Istook, Cynthia L.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1968-1979
    • /
    • 2010
  • New technology that includes 3D body scanning, digital virtual human, and digital virtual garments has had a significant impact on the current apparel industry. Virtual simulation technology enables the visualization of a 3D virtual garment on a virtual avatar so that consumers can try on garments with their virtual avatars before purchasing. However, the manual virtual avatar provided for online apparel shopping currently has revealed limitations on the different body sizes and shapes of customers. This study analyzes the process of designing the automatic virtual avatar and the manual virtual avatar using OptiTex software; in addition, the study compares the practicality of the automatic virtual avatar with that of the manual virtual avatar. Data was examined by evaluating how much each virtual avatar is similar to the real body and how well it matched the needs of the current apparel industry. In the study, Avatar 1 was automatically created from three-dimensional body scan data and Avatar 2 was manually created from body measurements. The virtual avatar images laid over a real body image and the results were evaluated by comparing the simulated sizes of virtual avatars with those of a real body. Consequently, Avatar 1 was evaluated as more similar to the real body than Avatar 2 in all five body shapes. This study illustrates that an automatic virtual avatar might solve the fit problem that is the most common reason for a high return rate for online shopping. The results show that future virtual simulation technology needs to be improved for the practicality of the virtual avatars.