• Title/Summary/Keyword: Scaling-Simulation

Search Result 357, Processing Time 0.028 seconds

Scaling law in MHD turbulence small-scale dynamo

  • Park, Kiwan;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • Magnetohydrodynamics(MHD) dynamo depends on many factors such as viscosity ${\gamma}$, magnetic diffusivity ${\eta}$, magnetic Reynolds number $Re_M$, external driving source, or magnetic Prandtl number $Pr_M$. $Pr_M$, the ratio of ${\gamma}$ to ${\eta}$ (for example, galaxy ${\sim}10^{14}$), plays an important role in small scale dynamo. With the high PrM, conductivity effect becomes very important in small scale regime between the viscous scale ($k_{\gamma}{\sim}Re^{3/4}k_fk_f$:forcing scale) and resistivity scale ($k_{\eta}{\sim}PrM^{1/2}k_{\gamma}$). Since ${\eta}$ is very small, the balance of local energy transport due to the advection term and nonlocal energy transfer decides the magnetic energy spectra. Beyond the viscous scale, the stretched magnetic field (magnetic tension in Lorentz force) transfers the magnetic energy, which is originally from the kinetic energy, back to the kinetic eddies leading to the extension of the viscous scale. This repeated process eventually decides the energy spectrum of the coupled momentum and magnetic induction equation. However, the evolving profile does not follow Kolmogorov's -3/5 law. The spectra of EV (${\sim}k^{-4}$) and EM (${\sim}k^0$ or $k^{-1}$) in high $Pr_M$ have been reported, but our recent simulation results show a little different scaling law ($E_V{\sim}k^{-3}-k^{-4}$, $EM{\sim}k^{-1/2}-k^{-1}$). We show the results and explain the reason.

  • PDF

Design and Analysis of a Switching State Feedback Controller to Reduce the Measurement Error Effect for a Chain of Integrators System under AC and DC Noise (AC와 DC 노이즈가 있는 적분기 시스템에서 측정에러의 영향을 감소시키는 스위칭 상태 궤환 제어기의 설계 및 분석)

  • Oh, Sang-Young;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, we propose a controller capable of reducing the effect of measurement errors under AC and DC noise. Typically, the control system measures data through a sensor. If sensor noise is included in a controller via the feedback channel, the signal is distorted and the entire system cannot work normally. Therefore, some appropriate action to counter the measurement error effect is essential in the controller design. Our controller is equipped with a gain-scaling factor and a compensator to reduce the effect of measurement error in the feedback signal. Also, we use a switching control strategy to enhance the performance of the controller regarding convergence speed. Our proposed controller can therefore effectively reduce the AC and DC noise of the sensor. We analyze the proposed controller by Laplace transform technique and our control method is verified via MATLAB simulation.

Direct ECC Bypass Phenomena in the MIDAS Test Facility During LBLOCA Reflood Phase

  • B.J. Yun;T.S. Kwon;D.J. Euh;I.C. Chu;Park, W.M.;C.H. Song;Park, J.K.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.421-432
    • /
    • 2002
  • As one of the advanced design features of the APR1400, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLI) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood phase of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is under progress. In this paper, test results of direct ECC bypass performed in the steam-water test facility tailed MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) are presented. The test condition is determined, based on the preliminary analysis of TRAC code, by applying the ‘modified linear scaling method’with the l/4.93 length scale . From the tests, ECC direct bypass fraction, steam condensation rate and information on the flow distribution in the upper annulus downcomer region are obtained.

The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy (생체모방공학을 이용한 고속철도 차간 공간에 적용한 부엉이 깃 형상 크기에 따른 공력소음 저감 연구)

  • HAn, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.606-611
    • /
    • 2012
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. To determine the effect of scaling of the owl's flight feather on the noise reduction, two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dB, while two-fold increase in length dimensions reduces the noise by 12 dB. Validation of numerical solution using wind tunnel experimental measurements are presented as well.

  • PDF

Investigation of Threshold Voltage in Si-Based MOSFET with Nano-Channel Length (Si-기반 나노채널 MOSFET의 문턱전압에 관한 분석)

  • 정정수;장광균;심성택;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.317-320
    • /
    • 2001
  • In this paper, we have presented the simulation results about threshold voltage at Si-based MOSFETs with channel length of nano scale. We simulated the Si-based n-channel MOSFETS with sate lengthes from 180 to 30 nm in accordance to constant voltage scaling theory. These MOSFETs had the lightly doped drain(LDD) structure, which is used for the reduction of electric field magnitude and short channel effects at the drain region. The stronger electric field at this region it due to scaling down. We investigated and analysed the threshold voltage of these devices. This analysis will provide insight into some applicable limitations at the ICs and used for basis data at VLSI.

  • PDF

Service Scheduling in Cloud Computing based on Queuing Game Model

  • Lin, Fuhong;Zhou, Xianwei;Huang, Daochao;Song, Wei;Han, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1554-1566
    • /
    • 2014
  • Cloud Computing allows application providers seamlessly scaling their services and enables users scaling their usage according to their needs. In this paper, using queuing game model, we present service scheduling schemes which are used in software as a service (SaaS). The object is maximizing the Cloud Computing platform's (CCP's) payoff via controlling the service requests whether to join or balk, and controlling the value of CCP's admission fee. Firstly, we treat the CCP as one virtual machine (VM) and analyze the optimal queue length with a fixed admission fee distribution. If the position number of a new service request is bigger than the optimal queue length, it balks. Otherwise, it joins in. Under this scheme, the CCP's payoff can be maximized. Secondly, we extend this achievement to the multiple VMs situation. A big difference between single VM and multiple VMs is that the latter one needs to decide which VM the service requests turn to for service. We use a corresponding algorithm solve it. Simulation results demonstrate the good performance of our schemes.

An Accurate and Efficient Method for Selecting and Scaling Ground Motions Considering Target Response Spectrum Mean and Variance (목표스펙트럼의 평균과 분산을 고려한 지반운동 선정과 배율조정계수 결정방법)

  • Ha, Seong Jin;Park, Mi Yeong;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.331-340
    • /
    • 2016
  • It is important to select proper ground motions for obtaining accurate results from response history analyses. The purpose of this study is to propose an accurate and efficient method that does not require excessive computation for selecting and scaling ground motions to match target response spectrum mean and variance. The proposed method is conceptually simple and straightforward, and it does not use a simulation algorithm that requires a sophisticated subroutine program. In this method, the desired number of ground motions are sequentially scaled and selected from a ground motion library. The proposed method gives the best selection results using Sum of Square Error and has the smallest value(=0.14). Also, The accuracy and consistency of the proposed method are verified by comparing the selection results of the proposed method with those of existing methods.

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Voltage Selection Methodology for DVFS Overhead Minimization (동적 전압 주파수 스케일링 오버헤드 최소화를 위한 전압 선택 방법론)

  • Chang, Jin Kyu;Han, Tae Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.854-857
    • /
    • 2015
  • As the number of devices integrated on system-on-chip(SoC) increases exponentially, energy reduction technology is essential. Dynamic Voltage and Frequency Scaling (DVFS) is a very effective technique for reducing power consumption. Since it requires complex voltage regulators and PLL circuits, DVFS tends to have significant overheads. In this paper, we propose a new voltage selection algorithm to minimize transition overhead for multiprocessor SoC (MPSoC). Simulation results show that proposed algorithm appears less energy consumption with transition overhead even though maintains performance.

  • PDF

Low-power Data Cache using Selective Way Precharge (데이터 캐시의 선택적 프리차지를 통한 에너지 절감)

  • Choi, Byeong-Chang;Suh, Hyo-Joong
    • The KIPS Transactions:PartA
    • /
    • v.16A no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Recently, power saving with high performance is one of the hot issues in the mobile systems. Various technologies are introduced to achieve low-power processors, which include sub-micron semiconductor fabrication, voltage scaling, speed scaling and etc. In this paper, we introduce a new method that reduces of energy loss at the data cache. Our methods take the benefits in terms of speed and energy loss using selective way precharging of way prediction with concurrent way selecting. By the simulation results, our method achieves 10.2% energy saving compared to the way prediction method, and 56.4% energy saving compared to the common data cache structure.