• Title/Summary/Keyword: Scaling exponent

Search Result 37, Processing Time 0.025 seconds

Study on Anomalous Scaling Exponents for Molecular Thin Film Growth Using Surface Lateral Diffusion Model

  • Gong, Hye-Jin;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2237-2242
    • /
    • 2011
  • Anomalous scaling behaviors such as significantly large growth exponent (${\beta}$) and small reciprocal of dynamic exponent (1/z) values for many molecular crystalline thin films have been reported. In this study, the variation of scaling exponent values and consequent growth behaviors of molecular thin films were more quantitatively analysed using a (1+1)-dimensional surface lateral diffusion model. From these simulations, influence of step edge barriers and grain boundaries of molecular thin films on the various scaling exponent values were elucidated. The simulation results for the scaling exponents were also well consistent with the experimental data for previously reported molecular thin film systems.

1/f scaling exponent of EEG depending on different sensitivities of behavioral activation and inhibition systems for young and elderly groups (청년층과 노인층의 행동활성화체계 및 행동억제체계 민감도에 따른 뇌파의 1/f 스케일링 분석)

  • Jin Seung-Hyun;Kim Wuon-Shik;Noh Gi-Young
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.415-422
    • /
    • 2005
  • The purpose of the present study was to investigate the differences of nonlinear characteristics of electroencephalogram (EEG) depending on different sensitivities of behavioral activation system (BAS) and behavioral inhibition system (BIS) of young and elderly groups. The EEGs from Fpl and Fp2 electrodes were recorded during resting condition. The young and elderly groups consisted of 19 and 31 healthy right-handed volunteers, respectively. We estimated 1/f scaling exponent which reflects the nonlinear dynamical complexity of EEG. As results, we found the differences of 1/f scaling exponent between young ant elderly BAS sensitive groups. The 1/f scaling exponent of young BAS sensitive group showed significantly higher values than those of elderly BAS sensitive group at the left prefrontal area (Fpl). The young BAS sensitive group had also a tendency to higher 1/f scaling exponent at the right prefrontal area (Fp2). Decrease of the 1/f scaling exponent indicates the increase of complexity and the decrease of the amount of information related to the statistical distribution. Therefore, the elderly BAS sensitive group has higher complexity than young BAS sensitive group, though they were all classified as BAS sensitive group by BAS/BIS scale. Our results suggest the possibility of correlation between BAS sensitivity an4 age.

  • PDF

Study on Scaling Exponent for Classification of Regions using Scaling Property (스케일 성질을 이용한 군집 지역에서의 스케일 인자에 대한 연구)

  • Jung, Younghun;Kim, Sunghun;Ahn, Hyunjun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.504-504
    • /
    • 2015
  • 수공구조물을 설계하기 위해서는 설계수문량을 빈도해석을 통해 산정할 수 있다. 빈도해석 중 지점빈도해석을 보완한 지역빈도해석을 적용하기 위해서는 군집분석을 통한 지역구분이 무엇보다 중요하다. 또한 스케일 성질(scaling property)은 강우의 시 공간적 특성을 지속기간별 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 강우의 IDF곡선을 제시할 수 있는 방법이다. 따라서 스케일 성질을 통해 군집된 지역에서의 강우자료에 적용하여 스케일 인자(scaling exponent)를 추정한 후 수문학적 동질성을 통계적 특성으로 설명하고자 한다. 본 연구를 수행하기에 앞서 군집 분석은 4개의 군집방법(평균연결법, Ward방법, Two-Step방법, K-means방법)을 적용하였고, 한강유역에 위치한 104개의 강우지점은 4개의 지역으로 구분하는 것이 적절하다고 판단되어 비계층적 방법인 k-means방법을 이용하여 지역을 구분하였다. 본 연구에서는 군집된 결과를 바탕으로 4개의 지역으로 구분된 지역에 포함된 강우지점을 대상으로 스케일 인자를 추정하고 수문학적 동질성을 통계적 방법으로 제시하고자 한다.

  • PDF

Eddy Diffusion in Coastal Seas: Observation and Fractal Diffusion Modelling (연안역와동확산: 관측 및 프랙탈 확산 모델링)

  • 이문진;강용균
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.115-124
    • /
    • 1997
  • We measured the variance of eddy diffusion and associated ‘diffusion coefficients’ in coastal regions of Korea by observing the separation distances among multiple drifters deployed simultaneously at the same initial position. The variance of eddy diffusion was found to be proportional to $t^m$, where t is the time and m is a non-integer scaling exponent between 1.5 and 3.5. The observed scaling exponent of eddy diffusion cannot be reproduced by diffusion models employing constant eddy diffusivity. In this study, we applied fractal theory in simulating exponential increase of variance of eddy diffusion. We employed the fGn(fractional Gaussian noise) as a ‘modified’ random walks corresponding to the oceanic eddy diffusion. The variance of eddy diffusion, which corresponds to the fBm(fractional Brown motion) of our diffusion model, is proportional to $t^{2H}$, where H is Hurst scaling exponent. The temporal increase of the variance. with scaling exponent between 1 and 2, was successfully reproduced by our fractal diffusion model. However, our model cannot reproduce scaling exponent greater than 2. The scaling exponents greater than 2 are associated with the velocity shear of the mean flow.

  • PDF

Dynamic stabilization for a nonlinear system with uncontrollable unstable linearization (제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화)

  • Seo, Sang-Bo;Seo, Jin-Heon;Shim, Hyung-Bo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.79-81
    • /
    • 2009
  • In this paper, we design a dynamic state feedback smooth stabilizer for a nonlinear system whose Jacobian linearization may have uncontrollable because its eigenvalues are on the right half-plane. After designing an augmented system, a dynamic exponent scaling and backstepping enable one to explicitly design a smooth stabilizer and a continuously differentiable Lyapunov function which is positive definite and proper.

  • PDF

Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension

  • Park, Soongwan;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.

Debye Screening Effect on Scaling Behavior of Longest Relaxation Time of Biological Polyelectrolyte Chain

  • Lee, Jeong Yong;Sung, Jung Mun;Yoon, Kyu;Chun, Myung-Suk;Jung, Hyun Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3703-3708
    • /
    • 2013
  • The scaling relationship of the longest relaxation time of a single chain of semiflexible biological polyelectrolyte has been investigated by performing well-established coarse-grained Brownian dynamics simulations. Two kinds of longest relaxation times were estimated from time-sequences of chain trajectories, and their behaviors were interpreted by applying the scaling law for different molecular weights of polyelectrolyte and Debye lengths. The scaling exponents for longest stress relaxation and rotational relaxation are found in the ranges of 1.67-1.79 and 1.65-1.81, respectively, depending on the physicochemical interaction of electrostatic Debye screening. The scaling exponent increases with decreasing screening effect, which is a special feature of polyelectrolytes differing from neutral polymers. It revealed that the weak screening allows a polyelectrolyte chain to follow the behavior in good solvent due to the strong electrostatic repulsion between beads.

Dynamic Stabilization for a Nonlinear System with Uncontrollable Unstable Linearization (제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, we design a dynamic state feedback smooth stabilizer for a nonlinear system whose Jacobian linearization may have uncontrollable mode because its eigenvalues are on the right half-plane. After designing an augmented system, a dynamic exponent scaling and backstepping enable one to explicitly design a smooth stabilizer and a continuously differentiable Lyapunov function which is positive definite and proper. The convergence of the designed controller is proved by the new notion 'degree indicator'.

Robust Finite-Time Stabilization for an Uncertain Nonlinear System (불확실한 비선형 시스템에 대한 강인 유한 시간 안정화)

  • Seo, Sang-Bo;Shin, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper we consider the problem of global finite-time stabilization for a class of uncertain nonlinear systems which include uncertainties. The uncertainties are time-varying disturbances or parameters belong to a known compact set. The proposed design method is based on backstepping and dynamic exponent scaling using an augmented dynamics, from which, a dynamic smooth feedback controller is derived. The finite-time stability of the closed-loop system and boundedness of the controller are preyed by the finite-time Lyapunov stability theory and a new notion 'degree indicator'.

Katayama Equation Modified on the Basis of Critical-Scaling Theory (임계 축척 이론을 이용한 카타야마 식의 수정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2006
  • It is desirable to have an accurate expression on the temperature dependence of surface(or interfacial) tension ${\sigma}$, because most of the interfacial thermodynamic functions can be derived from it. There have been proposed several equations on the temperature dependence of the surface tension, ${\sigma}(T)$. Among them $E{\ddot{o}}tv{\ddot{o}}s$ equation and the one modified by Katayama, which is called Katayama equation, for improving accuracies of $E{\ddot{o}}tv{\ddot{o}}s$ equation close to critical points, have been most well-known. In this article Katayama equation is interpreted on the basis of the cell model to understand the nature of the equation. The cell model results in an expression very similar to Katayama equation. This implies that, although $E{\ddot{o}}tv{\ddot{o}}s$ and Katayama equations were obtained on the basis of experimental results, they have a sound theoretical background. The Katayama equation is also modified with the phase volume replaced with a critical scaling expression. The modified Katayama equation becomes a power-law equation with the exponent slightly different from the value obtained by critical-scaling theory. This implies that Katayama equation can be replaced by a critical-scaling equation which is proven to be accurate.