• Title/Summary/Keyword: Scaled effect

Search Result 429, Processing Time 0.028 seconds

Seismic Behavior of Web-Continuous Diagrid Nodes (웨브 연속형 다이아그리드 노드의 이력 특성)

  • Jeong, In Yong;Kim, Young Ju;Ju, Young K;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.375-384
    • /
    • 2009
  • The application of the diagrid structural system has increased of late, but cyclic loadings such as winds and earthquakes cannot be fully understood through only an analytical study due to the difficulty of considering its welding property. In this study, diagrid nodes that had been scaled down to 1/5 of their full sizes were tested to find out their structural behavior under seismic or wind loads. Four specimens were used with five parameters, including the welding method and the design details. Cyclic loading tests were carried out, where a tensile load was applied to one brace member and a compression load to the other. The major failure modes in the tests were only failure of bending with tensile stress and tension failure. The welding method and the design details had no effect on the initial stiffness and yielding stress but play a significant role in the failure mode and energy dissipation, respectively.

A study on instrument development for promoting residents' participation in planning of a street in a decaying residential area (주거지 가로환경정비 과정에서 주민참여를 도모하는 지원도구 개발방안 연구)

  • Park, Hye-Yeun;Shin, Woong-Ju;Lee, Sang-Sun;Kim, Su-Suk;Lee, Yeun-Sook;Park, Gang-Chul
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.161-166
    • /
    • 2009
  • Resident and user participation has been emerging as a hot topic and has been predicted to be popular and general in urban planning and regeneration, specially in housing regeneration in future. Also the number of the resident who are willing to participate in planning and regeneration process is expected to increase drastically as democratic and diverse society get matured. To enable a wide range of residents in planning process within a very limited time, effective and efficient communication tools need to be prepared. The purpose of study is to develop a set of tools for facilitating residents to participate actively in the process of exploring, consulting and decision making process in the street and regeneration. A realistic and feasible testbed site was decided. Developed tools were first, educational contents to empower resident capability to select a better design, second, three dimensional scaled model of existing site, third, floorplan and elevation of design alternative, forth, computer simulation images of both 3D & sketch-up for comparing wall heights and their effect. fifth, Two workshops among professionals and one workshop with residents were carried. Through the workshop, guidelines of developing communication tool for facilitating resident participation was developed. Its usage was summarized in both in further analog and digital tool.

  • PDF

An Experimental Study. on Dynamic Characteristics of Submerged Co-axial Cylinderical Shells (수중 동축원통쉘 구조물의 경계조건 변화에 따른 동특성 시험)

  • 박진호;류정수;김태룡;심우건
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.668-674
    • /
    • 2001
  • An experimental study was performed for two types of co-axial cylindrical shell structures in order to establish the relationship between in-air dynamic characteristics and in-water ones and to observe hydrodynamic mass effects on their mode shapes when submerged. The outer cylinders are prepared with two kinds to get more insights on the fluid-structure interaction phenomena: one is flexible, which means that the outer cylinder has almost same stiffness as the inner one, and the other is a rigid one whose stiffness is more than ten times of the inner one's(it might be regarded as the scaled-down model of the reactor internals). The finite element. analyses were also implemented to support the experimental results. The results show that the natural frequencies of a co-axial cylindrical shell structure in water are remarkably lower than those in air due to the fluid mass effects. In case of the flexible-to-flexible cylinders, there exist in-phase and out-of-phase mode shapes and they are affected by the annular gap between the. co-axial cylinders. For the in-phase mode the in-water natural frequency decreases exponentially as the gap increases, while it slightly increases in case of the out-of-phase mode due to the squeezing effect of the gap fluid. In the flexible-to-rigid case, the normalized natural frequency(in-water frequency/in-air one) of the inner cylinder(core barrel model) ranges between in-phase and out-of-phase mode frequencies of the flexible-to-flexible co-axial cylindrical structure having identical dimensions. Also the normalized natural frequency of the inner cylinder of the flexible-to-rigid one moves from near of the in-phase mode frequency into the out-of-phase mode value of the flexible-to-flexible case as circumferential mode number(n) increases.

  • PDF

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Simulation of Blasting Demolition Using Three-Dimensional Bonded Particle Model (삼차원 입자결합모델을 이용한 구조물 해체발파 모사 연구)

  • Shin Byung-Hun;Jeon Seok-Won
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.65-77
    • /
    • 2005
  • Reflecting the fact that there are increasing number of old high-story apartment structures in urban area, it is expected that the demand of blasting demolition will increase in the near future. It is of great important to make up for the insufficient empirical knowledge in blasting demolition through priori method such as computer simulation. Computer simulation of the blasting demolition involves complicated process. In the past domestic researches, two-dimensional bonded particle model was used to examine the overall demolition behavior of a five-story simple structure. It was observed that the two-dimensional simulation did not properly simulate the collapsing behavior of a structure mainly due to the reduced degree of freedom. In this study, three-dimensional simulation was tried. It consumed a great amount of calculation time, which limited the extent of the study. A few parameters, such as delay times, amount of charge at each hole, ball properties, were modified in order to check oui; their effect on the collapsing behavior. The differences were observed as expected but the collapsing behavior did not exactly coincide with the test blasting with a scaled model.

Analysis of Dredging Efficiency for Operation of Dredging Cutter Head (준설용 커터헤드 운영방식에 따른 준설효율 향상특성 분석)

  • Chae, Dongseok;Park, Jae-Hyeon;Kim, Young Do;Kim, Myunghak;Lee, Mansoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.5-9
    • /
    • 2009
  • In this experiment, the cutter head was designed as the down-scaled shape from the cutter head of the Asan-3 of Hyundai Construction Company. The dredging simulation instrument was installed in the experiment water tank which has the dimension of $4.2m(L){\times}2.2m(W){\times}1.5m(H)$. The speed of all components were controlled manually through the hydraulic tool and motors to find the effective desilting condition. As the results, the experiment was conducted to find the optimate dredging cutter head operation rate. To compare the factors which effect on the dredging effectiveness, the dimensionless dredging volume ratio was introduced and it can be found the best effectiveness at 2.0 m/s suction speed, 8 cm dredging depth and 4~4.5 dimensionless dredging volume ratio. Therefore, in order to take the best effectiveness these 3 components factors should be adequately considered.

  • PDF

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

Influences of the Residential Environment on the Apartment Remodeling: Involving the Expansion of Households and Dwelling Area

  • Lee, Ji-Eun;Yoon, Young-Ho
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.259-268
    • /
    • 2011
  • Space extension and the increase of the number of households are helpful to raise business value of the remodeling through the renovation of apartment houses that is required by residents of new cities and large-scaled apartment. However, in the case of accepting this demand, it could have a bad influence on the landscape of a complex in terms of the structure of apartment houses and the safety of construction and urban planning, and a problem occurs in the aspect of fairness for reconstruction. For the study, the current status related to the remodeling system through laws, related articles since 2000 and research data was analyzed. In addition, the individual quantitative analysis was conducted in the four aspects to judge whether households expansion for remodeling is plausible:1) Statistical data to comprehend the changes of population and social structure 2) Survey data of floor space index and the building-to-land ratio of new cities at the intial stage for the review of the effect of architectural planning and urban environment 3) Surveys of experts on structural safety in order to judge whether the demand of expansion is accepted or not. 4) Quantitative analysis of each item to compare fairness with reconstruction. Therefore, this study is intended to understand problems of the remodeling system that is currently operated. Moreover, it will be further reviewed that the expansion of households is feasible through the permission of expansion and it will be discussed that the revitalization of the apartment remodeling has a positive impact on the residential environment.