• Title/Summary/Keyword: Scaled distance

Search Result 113, Processing Time 0.023 seconds

The Role of PPV and PVS in Controlled Blasting (제어발파의 설계 및 관리 과정에서의 PPV와 PVS의 역할)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Hwang, Hyun-Joo;Choi, Yong-Kun;Ahn, Myung-Seog
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The safe level for residential structures has usually been prescribed as just 'particle velocity' in various specifications in Korea. It implies that there is a possibility of interpreting the 'particle velocity' as the PPV (Peak Particle Velocity), PVS (Peak Vector Sum), or something else, depending on the interpreter. As a result, there have always been some difficulties in both designing a controlled blasting and controling the blast-induced ground vibrations. This paper is intended to show what the role of the safe level criteria such as PPV or PVS is, and also how we should use the concept of the scaled distance equation in a controlled blast design. The paper also emphasizes the importance of the allowable level for various residential structures and its uses in each stage of the controlled blast design.

Evaluation of the Less Development Indicator Based on Transportation Connectivity (교통연계성을 고려한 지역낙후도 지수 산정방안 연구)

  • Park, Shin Hyoung;Kim, Dongsun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.671-678
    • /
    • 2015
  • When evaluating the feasibility of construction projects of large-scaled transportation facilities such as roads or railways based solely on the result of the economic analysis, less development indicators are politically reflected on the investment decision-making because regions whose socio-economic indicators are poor may be disadvantaged or underserved for the projects. Existing less development indicators, however, does not consider the transportation connectivity which indicates how effective the transportation networks are established for the transport of people and goods. In this study, travel time contour maps, travel distance and travel time between regions, and a route curvature were utilized to define new indices which reflect transportation connectivity on the less development indicators. When the new indices are applied, the existing rankings of under-developedness were changed, which means that transportation connectivity could effect on the political decision. In this study, we also suggested the necessity of considering the transportation connectivity when evaluating less development indicators, developed measures of inter-regional linkages, and performed the whole procedures of combining existing and new indices to evaluate the less development indicators.

A Study on the Evaluation of Shock Vibration by a Medium Characteristics (매질특성에 따른 충격진동평가에 관한 연구)

  • Song, Jeong-Un;Hong, Woong-Ki;Kim, Seung-Kon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.641-649
    • /
    • 2011
  • The ground vibration has effect on the human body and the nearby structure. However, it was very difficult to estimate the damage of structure caused by the vibration. Especially, ground vibration must be estimated on the bottom of structure because it was made up of several mediums. In this study, it was considered about the shock vibration on medium characteristics as calculating the peak particle velocity and analysing the vibration waveform. The results are as follows : Firstly, the correlation coefficient of PPV(Peak Particle Velocity) and SD(Scaled Distance) was very high at the vertical component, which was represented to 0.991 in general ground medium and each 0.989, 0.961, 0.925 in concrete medium. And also, the vibration waveform at the vertical component was very good in all mediums. Secondly, the vibration waveform at the longitudinal component was represented to a great amplitude and phase difference in all mediums. It was considered that the vibration waveform occurred the damping when particle velocity by shock vibration was propagated through other medium. Thirdly, the vibration waveform in concrete medium was represented to variation of amplitude in the order of RC medium, NC=H medium, NC=S medium at the vertical component. It was considered that the particle velocity propagated fast when a medium have a big strength and density.

A Study on the Prediction of Risk Degree of Side Collapes Due to Excavation (기초굴착에 따른 측면붕괴의 위험성 예측에 관한 연구)

  • 강준묵;한승희;이재기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.17-25
    • /
    • 1991
  • A foundation excavation is necessarily included in construction works of structures. Involving the dangers of collapse, large-scaled excavation walls require periodic deformation measurements. As only relative displacements and acquired and surface measurements can not be made with the conventional measuring methods, the up-to-date method which can overcome these weaknesses is required urgently. Terrestrial photogrammetry is the method by which absolute deformation amounts of many points can be taken out at a distance from object in short time. The objective of this study is to suggest application propriety of terrestrial photogrammetry to the measurement of excavation walls. For it, we devised same position photography(S.P.P) and possibility of SPP proved through basic experiment. SPP was very speedy photographing method. We found out the fact that as the degree of overlap increase, accuracies of results increase. As a result of applying to excavation side-wall, we detected consistent displacement in 3 dimension each direction within the limits expectional accuracy. If control surveying could be carried out more quickly and accurately, the deformation displacement could be analyzed more effectively.

  • PDF

A Suggestion of Simplified Load Formula for Blast Analysis (폭발해석을 위한 간략 폭발하중 제안식)

  • Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2016
  • In this paper, a pressure-time history curve of blast load and Conwep model are presented, and a simplified blast load formula is suggested. Generally, a blast load are applied as a pressure-time history curve, and it is calculated by blast load formula such as Conwep model. The Conwep model which is used in most of the blast analysis is quiet difficult to calculate because of its complex process. Therefore, a simplified formula is proposed to calculate blast load by simple rational expressions and to make a simplified pressure-time history curve. In this process, a curve fitting method was used to find the simple rational expressions. The calculation results of the simplified formula have an error of less than 1% in comparison with the Conwep model. And, blast analyses using finite elements method are accomplished with the Conwep model and simplified formula for verification.

ISAR Cross-Range Scaling for a Maneuvering Target (기동표적에 대한 ISAR Cross-Range Scaling)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1062-1068
    • /
    • 2014
  • In this paper, a novel approach estimating target's rotation velocity(RV) is proposed for inverse synthetic aperture radar(ISAR) cross-range scaling(CRS). Scale invariant feature transform(SIFT) is applied to two sequently generated ISAR images for extracting non-fluctuating scatterers. Considering the fact that the distance between target's rotation center(RC) and SIFT features is same, we can set a criterion for estimating RV. Then, the criterion is optimized through the proposed method based on particle swarm optimization(PSO) combined with exhaustive search method. Simulation results show that the proposed algorithm can precisely estimate RV of a scenario based maneuvering target without RC information. With the use of the estimated RV, ISAR image can be correctly re-scaled along the cross-range direction.

Geologic Report on the Goobong Limestone Mine (구봉석회석광산의 지질조사보고(地質調査報告))

  • Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1970
  • The purpose of this report is to prepare a data for the economic evaluation on the Goobong Limestone Mine which is located at the south-eastern corner of the Yongchun Quadrangle scaled in 1:50,000. The accessibility from the mine to railroad was considered in two ways. One is to Dodam Station on Central Railway Line and the other is to reach Songjung-ni village which is near Sangyong Station on Hamback Railway Line. The distance of the former way is 26.7km and the later is 24.2km. Geologically the mine is situated near the base of the Greast Limestone Series which strikes generally $N25^{\circ}{\sim}30^{\circ}E$. The series comprises six different formations from older to younger; Pungchon Limestone Formation and Whajol Formation of Cambrian age, and Dongjum Quartzite Formation, Dumudong Formation, Maggol Limestone Formation and Goseong Formation of lower to middle Ordovician age. 82 samples; 48 from Pungchon Limestone Formation, 11 from Dumudong Formation, 15 from Maggol Limestone Formation and 8 from Goseong Formation, were taken from the series in the crossed direction to the general trend of the series as shown in geological map. They were chemically analyzed on the components of CaO, MgO, $SiO_2$, $R_2O_3(Al_2O_3+Fe_2O_3)$ and ignition loss as shown in table 2, table 3, table 4, and table 5. As seen from the tables, among the formations of the series, middle to upper parts of the Pungchon Limestone Formation and middle and upper parts of the Dumudong Formation have chemical composition as available source for the raw material of cement industry, not only that but also the part of the Pungchon Formation was highly evaluated as source for the flux of iron smelting and the raw material of carbide manufacturing because of its high purity of calcium carbonate.

  • PDF

Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight (프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가)

  • Choi, Ji Hun;Choi, Seung Jai;Yang, Dal Hun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.369-380
    • /
    • 2019
  • When a extreme loading such as blast is applied to prestressed concrete (PSC) structures and infrastructures for an instantaneous time, serious property damages and human casualties occur. However, a existing design procedure for PSC structures such as prestressed containment vessel (PCCV) and gas storage tank do not consider a protective design for extreme internal blast scenario. Particularly, an internal blast is much more dangerous than that of external blast. Therefore, verification of the internal blast loading is required. In this paper, the internal blast resistance capacity of PSC member is evaluated by performing internal blast tests on RC and bi-directional PSC scaled down specimens. The applied internal blast loads were 22.68, 27.22, and 31.75 kg (50, 60, and 70 lbs) ANFO explosive charge at 1,000 mm standoff distance. The data acquisitions include blast pressure, deflection, strain, crack patterns, and prestressing force. The test results showed that it is possible to predict the damage area to the structure when internal blast loading occurs in PCCV structures.

Numerical Study on Effect of Mesh Size on Vibration and Overpressure Propagation Induced by Underwater Blasting (수중발파로 인한 과압 및 진동 전파에서 메쉬크기의 영향에 대한 수치해석 연구)

  • Jeong, Hoyoung;Son, Hanam;Kim, Suhan;Kim, Yeolwoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.578-592
    • /
    • 2021
  • This study performed to investigate the propagation characteristics of overpressure, impulse, vibration in underwater blasting. The difference between air blasting and underwater blasting is that noise and vibration propagate through water as a medium. In some cases, the noise and vibration propagates through various media (rock, water, air, etc.). In this study, the underwater blasting was simulated using AUTODYN, and the propagation characteristics of overpressure, impulse and vibration induced by blasting were analyzed. We mainly focused on the effect of mesh size on the overpressure, impulse and peak particle velocity from the underwater blasting simulation. The numerical results indicated that the overpressure and peak particle velocity tended to decrease as the mesh size increased, while the impulse increased with the mesh size. The results also indicated that the mesh dependence varied depending on the explosive charge and scaled distance.

Monte Carlo Investigation of Dose Enhancement due to Gold Nanoparticle in Carbon-12, Helium-4, and Proton Beam Therapy

  • Sang Hee Ahn
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.114-120
    • /
    • 2022
  • Purpose: Particle beam therapy is advantageous over photon therapy. However, adequately delivering therapeutic doses to tumors near critical organs is difficult. Nanoparticle-aided radiation therapy can be used to alleviate this problem, wherein nanoparticles can passively accumulate at higher concentrations in the tumor tissue compared to the surrounding normal tissue. In this study, we investigate the dose enhancement effect due to gold nanoparticle (GNP) when Carbon-12, He-4, and proton beams are irradiated on GNP. Methods: First, monoenergetic Carbon-12 and He-4 ion beams of energy of 283.33 MeV/u and 150 MeV/u, respectively, and a proton beam of energy of 150 MeV were irradiated on a water phantom of dimensions 30 cm×30 cm×30 cm. Subsequently, the secondary-particle information generated near the Bragg peak was recorded in a phase-space (phsp) file. Second, the obtained phsp file was scaled down to a nanometer scale to irradiate GNP of diameter 50 nm located at the center of a 4 ㎛×4 ㎛×4 ㎛ water phantom. The dose enhancement ratio (DER) was calculated in intervals of 1 nm from the GNP surface. Results: The DER of GNP computed at 1 nm from the GNP surface was 4.70, 4.86, and 4.89 for Carbon-12, He-4, and proton beams, respectively; the DER decreased rapidly with increasing distance from the GNP surface. Conclusions: The results indicated that GNP can be used as radiosensitizers in particle beam therapy. Furthermore, the dose enhancement effect of the GNP absorbed by tumor cells can aid in delivering higher therapeutic doses.