• Title/Summary/Keyword: Scaled Model Test

Search Result 367, Processing Time 0.031 seconds

A Study for Felling Impact Vibration Prediction from Blasting Demolition (발파해체시 낙하충격진동 예측에 관한 연구)

  • 임대규;임영기
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.43-55
    • /
    • 2004
  • Use term of tower style construction exceeds recently. Accordingly, according to construction safety diagnosis result, achieve removal or Improvement construction. But when work removal, must shorten shut down time. Therefore, removal method of construction to use blasting demolition of construction is very profitable. Influence construction and equipment by blasting vibration and occurrence vibration caused by felling impact. Is using disadvantageous machine removal method of construction by and economic performance by effect of such vibartion. Therefore, this research studied techniques to forecast vibartion level happened at blasting demolition and vibration reduction techniques by use a scaled model test.

Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing

  • Seo, Seunghwan;Lim, Hyungsung;Chung, Moonkyung
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.457-470
    • /
    • 2021
  • In this study, the pull-out behavior of a tunnel-type anchorage for suspension bridges was investigated using experimental tests and image processing analyses. The study focused on evaluating the initial failure behavior and failure mode of the tunnel-type anchorage. In order to evaluate the failure mode of tunnel-type anchorage, a series of scaled model tests were conducted based on the prototype anchorage of the Ulsan Grand Bridge. In the model tests, the anchorage body and surrounding rocks were fabricated using a gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests demonstrate that the tunnel-type anchorage underwent a wedge-shaped failure. In addition, the failure mode changed according to the differences in the physical properties of the surrounding rock and the anchorage body and the size of the anchor plate. The size of the anchor plate was found to be an important parameter that determines the failure mode. However, the difference in physical properties between the surrounding rock and the anchorage body did not affect its size. In addition, this study analyzed the initial failure behavior of the tunnel-type anchorage through image analysis and confirmed that the failure was sequentially transferred from the inside of the tunnel to the surrounding rock according to the image analysis. The reasonable failure mode for the design of the tunnel-type anchorage should be wedge-type rather than pull-out type.

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

Design and Ground Test of Gust Generator for GLA Wind Tunnel Test (돌풍하중완화 풍동시험을 위한 돌풍발생장치 설계 및 지상시험)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.45-48
    • /
    • 2005
  • Tile gust generator was designed for generating the gust field in the wind tunnel test of the scaled flexible wing model for validating gust response alleviation system. The ground operation test was performed for estimating the dynamic performance of tile gust generator before installing it in the wind tunnel for gust field measurement. The ground test results showed that the gust generator has sufficient dynamic capability to simulate the sinusoidal and random motion of the gust generator wing and thus can be used in the wind tunnel test related to gust.

  • PDF

Deformation Characteristics of Underground Pipe with In-situ Soil CLSM (현장발생토 CLSM을 이용한 지하매설관의 변형특성)

  • 박재헌;이관호;조재윤;김석남
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.129-139
    • /
    • 2004
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the small-scaled model test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM.. From the model test in the lab, it was found out that the use of CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the gound surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was smaller than those in the other cases, and the absolute value was almost zero. Judging from the small-scaled model test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing failure of the underground pipes.

Dynamic Characterization of Sub-Scaled Building-Model Using Novel Optical Fiber Accelerometer System

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.601-608
    • /
    • 2011
  • This paper presents the damage assessment of a building structure by using a novel optical fiber accelerometer system. Especially, a sub-scaled building model is designed and manufactured to check up the feasibility of the optical fiber accelerometer for structural health monitoring. The novel accelerometer exploits the moir$\acute{e}$ fringe optical phenomenon and two pairs of optical fibers to measure the displacement with a high accuracy, and furthermore a pendulum to convert the displacement into acceleration. A prototype of optical fiber accelerometer system has been successfully developed that consists of a sensor head, a control unit and a signal processing unit. The building model is also designed as a 4-story building with a rectangular shape of $200{\times}300$ mm of edges. Each floor is connected to the next ones by 6 steel columns which are threaded rods. Basically, a random vibration test of the building model is done with a shaker and all of acceleration data is successfully measured at the assigned points by the optical fiber accelerometer. The experiments are repeated in the undamaged state and the damaged state. The comparison of dynamic parameters including the natural frequencies and the eigenvectors is successfully carried out. Finally, the optical fiber accelerometer is proven to be prospective to evaluate dynamic characteristics of a building structure for the damage assessment.

Structural health monitoring for pinching structures via hysteretic mechanics models

  • Rabiepour, Mohammad;Zhou, Cong;Chase, James G.;Rodgers, Geoffrey W.;Xu, Chao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.245-258
    • /
    • 2022
  • Many Structural Health Monitoring (SHM) methods have been proposed for structural damage diagnosis and prognosis. However, SHM for pinched hysteretic structures can be problematic due to the high level of nonlinearity. The model-free hysteresis loop analysis (HLA) has displayed notable robustness and accuracy in identifying damage for full-scaled and scaled test buildings. In this paper, the performance of HLA is compared with seven other SHM methods in identifying lateral elastic stiffness for a six-story numerical building with highly nonlinear pinching behavior. Two successive earthquakes are employed to compare the accuracy and consistency of methods within and between events. Robustness is assessed across sampling rates 50-1000 Hz in noise-free condition and then assessed with 10% root mean square (RMS) noise added to responses at 250 Hz sampling rate. Results confirm HLA is the most robust method to sampling rate and noise. HLA preserves high accuracy even when the sampling rate drops to 50 Hz, where the performance of other methods deteriorates considerably. In noisy conditions, the maximum absolute estimation error is less than 4% for HLA. The overall results show HLA has high robustness and accuracy for an extremely nonlinear, but realistic case compared to a range of leading and recent model-based and model-free methods.

Estimation of Quantitative Source Contribution of Ambient PM-10 Using the PMF Model (PMF모델을 이용한 대기 중 PM-10 오염원의 정량적 기여도 추정)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.719-731
    • /
    • 2003
  • In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The receptor methods were one of the statistical methods to achieve reasonable air pollution strategies. Also, receptor methods, a field of chemometrics, is based on manifold applied statistics and is a statistical methodology that analyzes the physicochemical properties of gaseous and particulate pollutant on various atmospheric receptors, identifies the sources of air pollutants, and quantifies the apportionment of the sources to the receptors. The objective of this study was 1) after obtaining results from the PMF modeling, the existing sources of air at the study area were qualitatively identified and the contributions of each source were quantitatively estimated as well. 2) finally efficient air pollution management and control strategies of each source were suggested. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols, the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided quantitative source contributions (scaled G matrix) and source profiles (scaled F matrix). The results of the PMF modeling showed that the sources were apportioned by secondary aerosol related source 28.8 %, soil related source 16.8%, waste incineration source 11.5%, field burning source 11.0%, fossil fuel combustion source 10%, industry related source 8.3%, motor vehicle source 7.9%, oil/coal combustion source 4.4%, non-ferrous metal source 0.3%. and aged sea- salt source 0.2%, respectively.

Model Tests Study on Flow-induced Vibration of fainter Gate in Estuary Sulices (I) - Flow from the Gate Outside to the Gate Inside - (배수갑문 테인터 게이트(Tainter Gate)의 진동현상에 관한 모형실험 ( I ) - 문비 밖에서 안으로의 흐름 -)

  • Lee, Seong-Haeng
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • A model test is carried out to investigate flow-induced vibration of a Tainter gate in estuary sulices. The gate model scaled with the ratio of 1:25 is made of acryl panel dimensioned 0.66m in width, 0.5m in height in the concrete test flume. Firstly, natural frequencies of the model gate are measured and the results are compared with the numerical results in order to verify the model. The amplitudes of the vibration are measured under the different gate opening and water level conditions in flow from the gate outside to the gate inside. Also 5 revised gate models with bottom width increased 0.5 cm each are tested under the different gate opening and water level. The results are analyzed to study the characteristics of the gate vibration. These test results are assessed in comparison with formerly test results, as a result, presents a design method of Tainter gate to reduce the gate vibration and a basic data for the guide manuals of gate management.

Quasi Static Test of Lap Spliced Shear-Flexure RC Piers Using Real Scale Models (주철근 겹침이음된 휨-전단 RC교각의 실물모형 준정적 실험)

  • 곽임종;조창백;조정래;김영진;김병석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.203-210
    • /
    • 2002
  • The past bridge design specifications of Korea didn't include 1imitation on the amount of lap splices in the plastic hinge zone of piers, and so do current specifications. But these specifications include just limitation on the minimal length of lap splices. Thus, a large majority of non-seismically designed bridge piers may have lap splices in plastic hinge zone. In this study, model pier was selected among existent bridge piers whose failure mode is complex shear-flexure mode. Full scaled RC pier models whose aspect ratio is about 2.67 were constructed and quasi static test according to the drift level history was implemented. From the test results, effect of the lap splices on the seismic performance of bridges piers was analyzed, and the seismic capacity of the model bridges was evaluated by capacity spectrum method.

  • PDF