• Title/Summary/Keyword: Scale-dependent modeling

Search Result 68, Processing Time 0.021 seconds

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam

  • Zhou, Jinxuan;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.85-97
    • /
    • 2022
  • Using a combination of nonlocal Eringen as well as classical beam theories, this research explores the thermal buckling of a bidirectional functionally graded nanobeam. The formulations of the presented problem are acquired by means on conserved energy as well as nonlocal theory. The results are obtained via generalized differential quadrature method (GDQM). The mechanical properties of the generated material vary in both axial and lateral directions, two-dimensional functionally graded material (2D-FGM). In nanostructures, porosity gaps are seen as a flaw. Finally, the information gained is used to the creation of small-scale sensors, providing an outstanding overview of nanostructure production history.

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

Small-scale effects on wave propagation in curved nanobeams subjected to thermal loadings based on NSGT

  • Ibrahim Ghoytasi;Reza Naghdabadi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.187-200
    • /
    • 2024
  • This study focuses on wave propagation analysis in the curved nanobeam exposed to different thermal loadings based on the Nonlocal Strain Gradient Theory (NSGT). Mechanical properties of the constitutive materials are assumed to be temperature-dependent and functionally graded. For modeling, the governing equations are derived using Hamilton's principle. Using the proposed model, the effects of small-scale, geometrical, and thermo-mechanical parameters on the dynamic behavior of the curved nanobeam are studied. A small-scale parameter, Z, is taken into account that collectively represents the strain gradient and the nonlocal parameters. When Z<1 or Z>1, the phase velocity decreases/increases, and the stiffness-softening/hardening phenomenon occurs in the curved nanobeam. Accordingly, the phase velocity depends more on the strain gradient parameter rather than the nonlocal parameter. As the arc angle increases, more variations in the phase velocity emerge in small wavenumbers. Furthermore, an increase of ∆T causes a decrease in the phase velocity, mostly in the case of uniform temperature rise rather than heat conduction. For verification, the results are compared with those available for the straight nanobeam in the previous studies. It is believed that the findings will be helpful for different applications of curved nanostructures used in nano-devices.

Extension and Case Analysis of Topic Modeling for Inductive Social Science Research Methodology (귀납적 사회과학연구 방법론을 위한 토픽모델링의 확장 및 사례분석)

  • Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.25-45
    • /
    • 2022
  • Purpose In this paper, we propose the method to extend topic modeling techniques in order to derive data-based research hypotheses when establishing research hypotheses for social sciences, As a concept in contrast to the existing deductive hypothesis establishment methodology for the social science research, the topic modeling technique was expanded to enable the so-called inductive hypothesis establishment methodology, and an analysis case of the Seongsan Ilchulbong online review based on the proposed methodology was presented. Design/methodology/approach In this paper, an extension architecture and extension algorithm in the form of extending the existing topic modeling were proposed. The extended architecture and algorithm include data processing method based on topic ratio in document, correlation analysis and regression analysis of processed data for topics derived by existing topic modeling. In addition, in this paper, an analysis case of the online review of Seongsan Ilchulbong Peak was presented by applying the extended topic modeling algorithm. An exploratory analysis was performed on the Seongsan Ilchulbong online reviews through the basic text analysis. The data was transformed into 5-point scale to enable correlation and regression analysis based on the topic ratio in each online review. A regression analysis was performed using the derived topics as the independent variable and the review rating as the dependent variable, and hypotheses could be derived based on this, which enable the so-called inductive hypothesis establishment. Findings This paper is meaningful in that it confirmed the possibility of deriving a causal model and setting an inductive hypothesis through an extended analysis of topic modeling.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Predictors of Attitudes toward Own Aging among Middle-Aged and Elderly Adults -Panel Analysis Using Latent Growth Modeling- (중노년층의 본인의 노화에 대한 태도에 영향을 미치는 요인 -잠재성장모델을 이용한 패널분석)

  • Lee, Mi-Jin
    • Korean Journal of Social Welfare
    • /
    • v.64 no.1
    • /
    • pp.101-124
    • /
    • 2012
  • This study examined the longitudinal changes of self-perceptions of own aging among middle-aged and elderly adults, using the latent growth modeling with the three waves of the "Aging and the Quality of Life of the Elderly in Korea", which sampled adults aged over 45 living in Seoul and Chuncheon. The dependent variable is attitudes toward own aging, the sub-scale of the Philadelphia Geriatric Center Morale Scale developed by Lawton (1975). The results showed that the research participants' attitudes of their own aging deteriorated over time. In addition, the lower initial status of the research participants' attitudes of their own aging was associated with being older, being non-married, living in rural areas, attaining the lower level of education, having the fewer social activities, reporting the worse subjective economic status, and reporting the worse subjective health status. The slope of the research participants' attitudes of their own aging differed by the residence areas, educational attainments, subjective economic status and subjective health status. In particular, the difference of the initial status by educational attainments grew over time. Social welfare policy and practice implications are discussed for middle-aged and elderly adults to improve attitudes toward their own aging.

  • PDF

Assessment of Scale Effects on Dynamics of Water Quality and Quantity for Sustainable Paddy Field Agriculture

  • Kim, Min-Young;Kim, Min-Kyeong;Lee, Sang-Bong;Jeon, Jong-Gil
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Modeling non-point pollution across multiple scales has become an important environmental issue. As a more representative and practical approach in quantifying and qualifying surface water, a modular neural network (MNN) was implemented in this study. Two different site-scales ($1.5\;{\times}\;10^5$ and $1.62\;{\times}\;10^6\;m^2$) with the same plants, soils, and paddy field management practices, were selected. Hydrologic data (rainfall, irrigation and surface discharge) and water quality data (time-series nutrient loadings) were continuously monitored and then used for the verification of MNN performance. Correlation coefficients (R) for the results predicted from the networks versus measured values were within the range of 0.41 to 0.95. The small block could be extrapolated to the large field for the rainfall-surface drainage process. Nutrient prediction produced less favorable results due to the complex phenomena of nutrients in the drainage water. However, the feasibility of using MNN to generate improved prediction accuracy was demonstrated if more hydrologic and environmental data are provided. The study findings confirmed the estimation accuracy of the upscaling from a small-segment block to large-scale paddy field, thereby contributing to the establishment of water quality management for sustainable agriculture.

Novel System Modeling and Design by using Eclectic Vehicle Charging Infrastructure based on Data-centric Analysis (전기차 충전인프라 및 데이터 연계 분석에 의한 시스템 모델링 및 실증 설계)

  • Kim, Hangsub;Park, Homin;Jeong, Taikyeong;Lee, Woongjae
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • In this paper, we analyzed the relationship between charging operation system and electricity charges connected with charging infrastructure among data of many demonstration projects focused on electric vehicles recently. At this point in time, due to the rapid increase in demand for the electric charging infrastructure that will take place in the future, we can prepare for an upcoming era in the sense of forecasting the demand value. At the same time, demonstrating and modeling optimized system modeling centering on sites is a prerequisite. The modeling based on the existing small - scale simulation and the design of the operating system are based on the data linkage analysis. In this paper, we implemented a new optimized system modeling and introduced it as a standard format to analyze time - dependent time - divisional data for each vehicle and user in each point and node. In order to verify the efficiency of the optimization based on the data linkage analysis for the actual implemented electric car charging infrastructure and operation system.

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.