• 제목/요약/키워드: Scale-Invariant Feature Transform

검색결과 163건 처리시간 0.025초

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

Visual Servoing을 위한 3차원 물체의 인식 및 자세 추정 (Recognition and Pose Estimation of 3-D Objects for Visual Servoing)

  • 양재호;정문호;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1931-1932
    • /
    • 2006
  • 로봇이 어떤 물체를 인지하고 그 물체에 대해 어떤 작업을 하고자 할 때 특정 물체의 인식 문제, 3차원 정보를 획득하는 문제, 자세를 추정하는 문제 등 해결해야 될 문제들이 있다. 물체를 인식하는 과정에서는 주위 배경과 물체의 크기의 변화, 회전, 가려짐 등으로 인해 물체 인식을 어렵게 만드는 요소들이 있다. 2차원 이미지를 통해 3차원 정보를 추출하는 과정은 일반적으로 두 대의 카메라를 이용하여 스테레오 이미지를 통해 얻는다. 이 때 좌우 영상간의 매칭의 과정이 필요하다. 자세 추정의 문제는 카메라 좌표와 물체의 좌표간의 관계를 알아야 한다. Visual Servoing을 어렵게 만드는 많은 요인들이 있으며 본 논문에서는 물체의 크기, 회전, 이동에 불변인 디스크립터(descriptor)를 사용하는 SIFT(Scale Invariant Feature Transform)를 통해 3차원 물체의 인식과 자세를 추정하는 방법을 제시한다. 또한 자세 추정을 위해 2차원 Keypoint들의 매칭을 3차원 정보를 통해 검증하는 방법을 제시한다. (SIFT에 의해 추출된 point를 Keypoint라 명한다.)

  • PDF

A novel hardware design for SIFT generation with reduced memory requirement

  • Kim, Eung Sup;Lee, Hyuk-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권2호
    • /
    • pp.157-169
    • /
    • 2013
  • Scale Invariant Feature Transform (SIFT) generates image features widely used to match objects in different images. Previous work on hardware-based SIFT implementation requires excessive internal memory and hardware logic [1]. In this paper, a new hardware organization is proposed to implement SIFT with less memory and hardware cost than the previous work. To this end, a parallel Gaussian filter bank is adopted to eliminate the buffers that store intermediate results because parallel operations allow all intermediate results available at the same time. Furthermore, the processing order is changed from the raster-scan order to the block-by-block order so that the line buffer size storing the source image is also reduced. These techniques trade the reduction of memory size with a slight increase of the execution time and external memory bandwidth. As a result, the memory size is reduced by 94.4%. The proposed hardware for SIFT implementation includes the Descriptor generation block, which is omitted in the previous work [1]. The addition of the hardwired descriptor generation improves the computation speed by about 30 times when compared with the previous work.

소벨-메디언 필터링을 이용한 UAV 영상의 정밀 DTM 구축 방법에 관한 연구 (The Construction Method of Precise DTM of UAV Images Using Sobel-median Filtering)

  • 나영우
    • 도시과학
    • /
    • 제12권2호
    • /
    • pp.43-52
    • /
    • 2023
  • UAV have the disadvantage that are weak from rainfall or winds due to the light platform, so use Scale-Invariant Feature Transform (SIFT) method which extrude keypoints in image matching process. To find the efficient filtering method for the construction of precise Digital Terrain Model (DTM) using UAV images, comparatively analyzed sobel and Differential of Gaussian (DoG) and found sobel is more efficient way to extrude buildings, trees, and so on. And edges are extruded more clearly when applying median additionally which have the merit of preserving edge and eliminating noise. In this study, applied sobel-median filtering which plus median to sobel and constructed the 1st filtered DTM that extrude building and trees and 2nd filtered DTM that extrude cars by threshold of gradient, Analysis of the degree of accuracy improvement showed that standard deviations of 1st filtered DTM and 2nd filtered DTM are 0.32m, 0.287m respectively, and both are acceptable for the tolerance of 0.33m for elevation points of 1/1,000 digital map, and the accuracy was increased about 10% by filtering automobiles. Plus, moving things are changed those position and direction in every image, and these are not target to filter because of the characteristic that is excluded from SIFT method.

가려짐 영역 검출 및 스테레오 영상 내의 특징들을 이용한 다시점 영상 생성 (Multi-view Image Generation from Stereoscopic Image Features and the Occlusion Region Extraction)

  • 이왕로;고민수;엄기문;정원식;허남호;유지상
    • 방송공학회논문지
    • /
    • 제17권5호
    • /
    • pp.838-850
    • /
    • 2012
  • 본 논문에서는 스테레오 영상에서 얻은 다양한 특징들을 이용하여 다시점 영상을 생성하는 방법을 제안한다. 제안된 기법에서는 먼저 주어진 스테레오 영상에서 명암변화 주목도 지도(intensity gradient saliency map)를 생성한다. 다음으로 좌우 영상 간에 블럭 단위의 움직임을 나타내는 광류(optical flow)를 계산하고 scale-invariant feature transform(SIFT) 기법을 통해 사물의 크기와 회전에 변하지 않는 영상의 특징 점을 구하여 이 특징점 간의 변이를 구한 다음, 이 두 변이 정보들을 결합하여 변이 주목도 지도(disparity saliency map)를 생성 한다. 생성된 변이 주목도 지도는 가려짐 영역 검출을 통해 오류 변이가 제거된다. 세 번째로 영상 워핑시에 직선의 왜곡을 최소화하기 위해 직선 세그먼트를 얻는다. 마지막으로 다시점 영상은 이렇게 추출된 영상 특징들을 제한 조건으로 사용하여 그리드 메쉬(grid-mesh) 기반 영상 워핑(warping) 기법에 의해 생성된다. 실험 결과를 통해 제안한 기법으로 생성된 다시점 영상의 화질이 기존 DIBR 기법보다 우수한 것을 확인할 수 있었다.

조영 전후의 폐 CT 영상 정합을 위한 특징 기반의 비강체 정합 기법 (Feature-based Non-rigid Registration between Pre- and Post-Contrast Lung CT Images)

  • 이현준;홍영택;심학준;권동진;윤일동;이상욱;김남국;서준범
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.237-244
    • /
    • 2011
  • In this paper, a feature-based registration technique is proposed for pre-contrast and post-contrast lung CT images. It utilizes three dimensional(3-D) features with their descriptors and estimates feature correspondences by nearest neighborhood matching in the feature space. We design a transformation model between the input image pairs using a free form deformation(FFD) which is based on B-splines. Registration is achieved by minimizing an energy function incorporating the smoothness of FFD and the correspondence information through a non-linear gradient conjugate method. To deal with outliers in feature matching, our energy model integrates a robust estimator which discards outliers effectively by iteratively reducing a radius of confidence in the minimization process. Performance evaluation was carried out in terms of accuracy and efficiency using seven pairs of lung CT images of clinical practice. For a quantitative assessment, a radiologist specialized in thorax manually placed landmarks on each CT image pair. In comparative evaluation to a conventional feature-based registration method, our algorithm showed improved performances in both accuracy and efficiency.

기하학적 해석을 이용한 비전 기반의 장애물 검출 (Vision-based Obstacle Detection using Geometric Analysis)

  • 이종실;이응혁;김인영;김선일
    • 전자공학회논문지SC
    • /
    • 제43권3호
    • /
    • pp.8-15
    • /
    • 2006
  • 이동 로봇의 많은 응용분야에서 장애물을 검출하는 것은 중요한 요소이다. 스테레오 비전과 광류를 이용하여 장애물을 검출하는 방법은 복잡한 연산을 요구하므로 본 논문에서는 단지 두 장면의 영상만을 이용하여 비전 기반 장애물 검출 방법을 제시하고 단일 카메라와 주행거리계를 사용하여 실시간 처리가 가능하도록 하였다. 제안한 방법은 두 장면으로부터 3차원 복원을 수행함으로서 장애물을 검출하는 방법으로 먼저 두 장면의 입력영상 각각에 대하여 Lowe의 SIFT를 사용하여 특징점을 추출하고 이들 간의 대응점을 구한다. 그리고 주행거리계로부터 주어지는 회전과 병진행렬 값들과 삼각법을 이용하여 대응점들에 대한 3차원 위치를 구한다. 이렇게 삼각법에 의해 얻어진 결과는 장애물들에 대한 부분적인 3차원 복원을 의미한다. 제안한 방법은 실내에서 주행하는 이동 로봇에 적용하였을 때 좋은 결과를 얻을 수 있었으며, 75msec의 속도로 장애물을 검출할 수 있었다.

FAST를 이용한 파노라마 영상 생성 방법 (A panorama image generation method using FAST algorithm)

  • 김종호;고진웅;유지상
    • 한국정보통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.630-638
    • /
    • 2016
  • 본 논문에서는 자연스러운 파노라마 영상 생성을 위해 SIFT와 SURF 방법보다 빠른 FAST(Features from Accelerated Segment Test)를 이용한 특징점 기반의 파노라마 영상 생성 기법을 제안한다. 다수의 영상을 이용해 자연스러운 파노라마 영상을 만들기 위해 실린더 투영을 수행 한 후 추출된 특징점들을 RANSAC(Random Sample Consensus)을 이용해 정합 시 오차율을 최소화한다. 서로 다른 방향에서 얻는 다수의 영상을 합성할 때 정합 경계 주변의 이질감을 보완하기 위해 블렌딩 기법을 사용함으로써 자연스러운 파노라마 영상을 생성한다. 제안하는 기법에서는 영상을 정합할 때 영상의 입력 순서와 방향에 관계없이 파노라마 영상을 만들 수 있다. 또한 기존의 방법보다 빠른 속도로 영상 정합이 가능하다. 다수의 영상으로 실험을 한 결과 왜곡이 보정되고 자연스러운 파노라마 영상을 생성할 수 있었다.

연속 영상에서 강인한 얼굴 및 얼굴 특징 추적 (Robust Face and Facial Feature Tracking in Image Sequences)

  • 장경식;이찬희
    • 한국정보통신학회논문지
    • /
    • 제14권9호
    • /
    • pp.1972-1978
    • /
    • 2010
  • AAM(Active Appearance Model)은 변형 가능한 형태의 검출에 가장 효과 적인 방법의 하나이며, 수학적으로 최적화 문제이다. 비용함수는 최소자승 함수이어서 볼록 함수이나, 탐색 공간이 볼록공간이 아니므로 국소 최소값이 전역 최소값인 것으로 보장 되지 않는다. 즉 초기값이 전역 최소값 근방에서 출발하지 않으면, 지역 최소값에 수렴하여 정확한 얼굴 윤곽 검출이 어려워진다. 본 논문에서는 연속적인 입력영상에 SIFT(Scale Invariant Feature Transform)와 유전자 알고리즘을 사용하여 눈동자를 검출하고 AAM 모델의 초기화 정보로 사용함으로써 조명과 배경에 강인한 AAM 기반의 얼굴 정합 방법을 제안한다. 실험을 통하여 제안한 AAM 기반 얼굴 정합 방법이 자세, 얼굴 배경 등에 대해 기존의 AAM 기반 얼굴 정합 방법보다 더 강인한 것으로 확인 되었다.

Quality Assessment of Images Projected Using Multiple Projectors

  • Kakli, Muhammad Umer;Qureshi, Hassaan Saadat;Khan, Muhammad Murtaza;Hafiz, Rehan;Cho, Yongju;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.2230-2250
    • /
    • 2015
  • Multiple projectors with partially overlapping regions can be used to project a seamless image on a large projection surface. With the advent of high-resolution photography, such systems are gaining popularity. Experts set up such projection systems by subjectively identifying the types of errors induced by the system in the projected images and rectifying them by optimizing (correcting) the parameters associated with the system. This requires substantial time and effort, thus making it difficult to set up such systems. Moreover, comparing the performance of different multi-projector display (MPD) systems becomes difficult because of the subjective nature of evaluation. In this work, we present a framework to quantitatively determine the quality of an MPD system and any image projected using such a system. We have divided the quality assessment into geometric and photometric qualities. For geometric quality assessment, we use Feature Similarity Index (FSIM) and distance-based Scale Invariant Feature Transform (SIFT). For photometric quality assessment, we propose to use a measure incorporating Spectral Angle Mapper (SAM), Intensity Magnitude Ratio (IMR) and Perceptual Color Difference (ΔE). We have tested the proposed framework and demonstrated that it provides an acceptable method for both quantitative evaluation of MPD systems and estimation of the perceptual quality of any image projected by them.