• Title/Summary/Keyword: Scalable Video Coding

Search Result 240, Processing Time 0.027 seconds

Dynamic and Interoperable Adaptation of SVC for QoS-Enabled Streaming (MPEG-21 및 H.264/AVC SVC 기반 동적 비디오 적응 방법)

  • Choi, Hae-Chul;Kim, Jae-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.10-19
    • /
    • 2012
  • Seamless streaming of multimedia content that ensures Quality of Service over heterogeneous networks has been a desire for many multimedia services, for which the multimedia contents should be adapted to usage environments such as network characteristics, terminal capabilities, and user preferences. Scalability in video coding is a good feature to meet the requirement of heterogeneous networks. In this paper, we propose a dynamic adaptation scheme of H.264/AVC SVC bit-stream using the MPEG-21 Digital Item Adaptation (DIA) tool. MPEG-21 DIA framework provides systematic solutions in choosing an adaptation operation to given conditions and supports interoperable video adaptation. The experiment results show that the proposed adaptation scheme provides QoS-enabled delivery and consumption of SVC with time-varying constraints of network, terminal, and user preference, in a robust and efficient way. In particular, the proposed adaptation scheme is proved to work well with very low delay under the condition that the variation rate of the given network bandwidth is upto 62%.

Design of 8K Broadcasting System based on MMT over Heterogeneous Networks

  • Sohn, Yejin;Cho, Minju;Paik, Jongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4077-4091
    • /
    • 2017
  • This paper presents the design of a broadcasting scenario and system for an 8K-resolution content. Due to an 8K content is four times larger than the 4K content in terms of size, many technologies such as content acquisition, video coding, and transmission are required to deal with it. Therefore, high-quality video and audio for 8K (ultra-high definition television) service is not possible to be transmitted only using the current terrestrial broadcasting system. The proposed broadcasting system divides the 8K content into four 4K contents by area, and each area is hierarchically encoded by Scalable High-efficiency Video Coding (SHVC) into three layers: L0, L1, and L2. Every part of the 8K video content divided into areas and hierarchy is independently treated. These parts are transmitted over heterogeneous networks such as digital broadcasting and broadband networks after going through several processes of generating signal messages, encapsulation, and packetization based on MPEG media transport. We propose three methods of generating streams at the sending entity to merge the divided streams into the original content at the receiving entity. First, we design the composition information, which defines the presentation structure for displays. Second, a descriptor for content synchronization is included in the signal message. Finally, we define the rules for generating "packet_id" among the packet header fields and design the transmission scheduler to acquire the divided streams quickly. We implement the 8K broadcasting system by adapting the proposed methods and show that the 8K-resolution contents are stably received and serviced with a low delay.

SHVC-based Texture Map Coding for Scalable Dynamic Mesh Compression (스케일러블 동적 메쉬 압축을 위한 SHVC 기반 텍스처 맵 부호화 방법)

  • Naseong Kwon;Joohyung Byeon;Hansol Choi;Donggyu Sim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.314-328
    • /
    • 2023
  • In this paper, we propose a texture map compression method based on the hierarchical coding method of SHVC to support the scalability function of dynamic mesh compression. The proposed method effectively eliminates the redundancy of multiple-resolution texture maps by downsampling a high-resolution texture map to generate multiple-resolution texture maps and encoding them with SHVC. The dynamic mesh decoder supports the scalability of mesh data by decoding a texture map having an appropriate resolution according to receiver performance and network environment. To evaluate the performance of the proposed method, the proposed method is applied to V-DMC (Video-based Dynamic Mesh Coding) reference software, TMMv1.0, and the performance of the scalable encoder/decoder proposed in this paper and TMMv1.0-based simulcast method is compared. As a result of experiments, the proposed method effectively improves in performance the average of -7.7% and -5.7% in terms of point cloud-based BD-rate (Luma PSNR) in AI and LD conditions compared to the simulcast method, confirming that it is possible to effectively support the texture map scalability of dynamic mesh data through the proposed method.

MAC-Layer Error Control for Real-Time Broadcasting of MPEG-4 Scalable Video over 3G Networks (3G 네트워크에서 MPEG-4 스케일러블 비디오의 실시간 방송을 위한 실행시간 예측 기반 MAC계층 오류제어)

  • Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.63-71
    • /
    • 2014
  • We analyze the execution time of Reed-Solomon coding, which is the MAC-layer forward error correction scheme used in CDMA2000 1xEV-DO broadcast services, under different air channel conditions. The results show that the time constraints of MPEG-4 cannot be guaranteed by Reed-Solomon decoding when the packet loss rate (PLR) is high, due to its long computation time on current hardware. To alleviate this problem, we propose three error control schemes. Our static scheme bypasses Reed-Solomon decoding at the mobile node to satisfy the MPEG-4 time constraint when the PLR exceeds a given boundary. Second, dynamic scheme corrects errors in a best-effort manner within the time constraint, instead of giving up altogether when the PLR is high; this achieves a further quality improvement. The third, video-aware dynamic scheme fixes errors in a similar way to the dynamic scheme, but in a priority-driven manner which makes the video appear smoother. Extensive simulation results show the effectiveness of our schemes compared to the original FEC scheme.

An Active Queue Management Algorithm Based on the Temporal Level for SVC Streaming (SVC 스트리밍을 위한 시간 계층 기반의 동적 큐 관리 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.425-436
    • /
    • 2009
  • In recent years, the user demands have increased for multimedia service of high quality over the broadband convergence network. These rising demands for high quality multimedia service led the popularization of various user terminals and large scale display equipments, which needs a variety type of QoS (Quality of Service). In order to support demands for QoS, numerous research projects are in progress both from the perspective of network as well as end system; For example, at the network perspective, QoS guaranteeing by improving of internet performance such as Active Queue Management, while at the end system perspective, SVC (Scalable Video Coding) encoding scheme to guarantee media quality. However, existing AQM algorithms have problems which do not guarantee QoS, because they did not consider the essential characteristics of video encoding schemes. In this paper, it is proposed to solve this problem by deploying the TS- AQM (Temporal Scalability Active Queue Management) which employs the differentiated packet dropping for dependency of the temporal level among the frames, based on SVC encoding characteristics by exploiting the TID (Temporal ID) field of the SVC NAL unit header. The proposed TS-AQM guarantees multimedia service quality through video decoding reliability for SVC streaming service, by differentiated packet dropping when congestion exists.

Domain Key Based Efficient Redistribution Mechanism of Scalable Contents (도메인 키 기반의 효율적인 스케일러블 콘텐츠 재분배 메커니즘)

  • Park, Su-Wan;Shin, Sang-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.129-134
    • /
    • 2010
  • In this paper, we propose a redistribution mechanism of the content that is adapted to devices, which may have different display size and computing capabilities, in home network. The proposed system introduces a mechanism that the encrypted content compressed by H.264/SVC(Scalable Video Coding) scheme which has been standardized recently is provided to the device into a level of content suitable to each device capability. To efficiently superdistribute SVC content, this paper defines three requirements and proposes redistribution mechanism which satisfies these requirements using another licence that it is called 'Ticket'. Our system allows devices to redistribute the content freely in the domain using domain key.

Exploiting Quality Scalability in Scalable Video Coding (SVC) for Effective Power Management in Video Playback (계층적 비디오 코딩의 품질확장성을 활용한 전력 관리 기법)

  • Jeong, Hyunmi;Song, Minseok
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.604-609
    • /
    • 2014
  • Decoding processes in portable media players have a high computational cost, resulting in high power consumption by the CPU. If decoding computations are reduced, the power consumed by the CPU is also be reduced, but such a choice generally results in a degradation of the video quality for the users, so it is essential to address this tradeoff. We proposed a new CPU power management scheme that can make use of the scalability property available in the H.164/SVC standard. We first proposed a new video quality model that makes use of a video quality metric(VQM) in order to efficiently take into account the different quantization factors in the SVC. We then propose a new dynamic voltage scaling(DVS) scheme that can selectively combine the previous decoding times and frame sizes in order to accurately predict the next decoding time. We then implemented a scheme on a commercial smartphone and performed a user test in order to examine how users react to the VQM difference. Real measurements show that the proposed scheme uses up to 34% fewer energy than the Linux DVFS governor, and user tests confirm that the degradation in the quality is quite tolerable.

Reduction Method of Motion Searching Complexity for Higher Layer in Spatial Scalable Video Coding (공간계층형 영상부호화에서 상위계층의 움직임 탐색 복잡도 감소화 방법)

  • 권순각;김재균;최재각
    • Journal of Broadcast Engineering
    • /
    • v.3 no.2
    • /
    • pp.118-126
    • /
    • 1998
  • In order to fedice the computational complexity of the motion estimation for the spatio-temporal prediction of the higher layer, two estimation method are proposed. In the first one, the motion vector of the higher layer is estimated within the small search range by using the previously estimated motion vector in the lower layer as an innitial vector. Inthe second one, the notion vector is estimated by the spatio-temporally weighted search, which is combined with the previously estimated motion vector of the lower layer and the weight for spatial prediction. Simulation results show that the proposed methods give the smaller computational complexity without the degradation of the coding efficiency than the conventinal one.

  • PDF

차세대 DMB (AT-DMB) 기술개발 현황

  • Kim, Yeong-Su;Lee, Hun-Hui;Yun, Jeong-Il;Bae, Byeong-Jun;Song, Yun-Jeong;Jeong, Haeng-Un;Im, Hyeong-Su
    • Information and Communications Magazine
    • /
    • v.30 no.5
    • /
    • pp.51-58
    • /
    • 2013
  • 본 논문에서는 차세대 지상파 DMB 방송 기술인 AT-DMB(Advanced Terrestrial Digital Multimedia Broadcasting) 기술의 내용과 AT-DMB 기반의 지역한정 데이터방송 서비스 기술에 대해 기술하고, 실제 필드에서 수행된 실험방송 내용에 대해서도 소개한다. AT-DMB 기술은 기존의 T-DMB 방송과 역호환성(backward compatibility)을 유지하면서 전송용량을 T-DMB 대비 최대 2배까지 증대시킨 기술이다. 추가확보된 전송용량에 새로운 채널을 할당하거나 MPEG-4 SVC(Scalable Video Coding) 기술을 이용하여 기존 T-DMB의 QVGA(320x240) 화질 대신 VGA(640x480)급의 고화질을 제공할 수 있다.

An Efficient MCTF Architecture using Processing Frame Re-configuration (처리 프레임의 재구성을 통한 효율적인 MCTF 구조)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Young-Hyun;Kim, Dong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • In this paper, we proposed a new MCTF (Motion Compensated Temporal Filtering) technique and its hardware (H/W) architecture for SVC (Scalable Video Coding). Since the proposed MCTF Kernel has a extensible architecture, it executes temporal filtering using (5,3) and (3,1) lifting operation. Also it has the same output data rate as the input, and it can continuously produce filtered frames after some latency time. Since the proposed architecture has simpler architecture than previous ones, it is easily mapped into H/W and has optimized memory usage rate and low cost.

  • PDF