• Title/Summary/Keyword: Scalable FFT

Search Result 5, Processing Time 0.018 seconds

Scalable FFT Processor Based on Twice Perfect Shuffle Network for Radar Applications (레이다 응용을 위한 이중 완전 셔플 네트워크 기반 Scalable FFT 프로세서)

  • Kim, Geonho;Heo, Jinmoo;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.429-435
    • /
    • 2018
  • In radar systems, FFT (fast Fourier transform) operation is necessary to obtain the range and velocity of target, and the design of an FFT processor which operates at high speed is required for real-time implementation. The perfect shuffle network is suitable for high-speed FFT processor. In particular, twice perfect shuffle network based on radix-4 is preferred for very high-speed FFT processor. Moreover, radar systems that requires various velocity resolution should support scalable FFT points. In this paper, we propose a 8~1024-point scalable FFT processor based on twice perfect shuffle network algorithm and present hardware design and implementation results. The proposed FFT processor was designed using hardware description language (HDL) and synthesized to gate-level circuits using $0.65{\mu}m$ CMOS process. It is confirmed that the proposed processor includes logic gates of 3,293K.

Design of Efficient FFT Processor for MIMO-OFDM Based SDR Systems (MIMO-OFDM 기반 SDR 시스템을 위한 효율적인 FFT 프로세서 설계)

  • Yang, Gi-Jung;Jung, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.87-95
    • /
    • 2009
  • In this paper, an area-efficient FFT processor is proposed for MIMO-OFDM based SDR systems. The proposed scalable FFT processor can support the variable length of 64, 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate4eve1 circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 59% and 39%, respectively, compared with those of the 4-channel radix-2 single-path delay feedback (R2SDF) FFT processor. Also, compared with 4-channel radix-2 MDC (R2MDC) FFT processor, it is confirmed that the gate count and memory size are reduced by 16.4% and 26.8, respectively.

Design of Efficient FFT Processor for IEEE 802.16e Mobile WiMax Systems (IEEE 802.16e Mobile WiMax 시스템을 위한 효율적인 FFT 프로세서 설계)

  • Park, Youn-Ok;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • In this paper, an area-efficient FFT processor is proposed for IEEE 802.16e mobile WiMax systems. The proposed scalable FFT processor can support the variable length of 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput. The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 16% and 27%, respectively, compared with those of the 4-channel radix-2 MDC (R2MDC) FFT processor.

Design and Implementation of Multi-channel FFT Processor for MIMO Systems (MIMO 시스템을 위한 다채널 FFT 프로세서의 설계 및 구현)

  • Jung, Yongchul;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.659-665
    • /
    • 2017
  • In this paper, a low complexity fast Fourier transform(FFT) processor is proposed for multiple input multiple output(MIMO) systems. The IEEE 802.11ac standard has been adopted along with the demand for a system capable of high channel capacity and Gbps transmission in order to utilize various multimedia services using a wireless LAN. The proposed scalable FFT processor can support the variable length of 64, 128, 256, and 512 for 8x8 antenna configuration as specified in IEEE 802.11ac standard with MIMO-OFDM scheme. By reducing the required number of non-trivial multipliers with mixed-radix(MR) and multipath delay commutator(MDC) architecture, the complexity of the proposed FFT processor was dramatically decreased. Implementation results show that the proposed FFT processor can reduced the logic gate count by 50%, compared with the radix-2 SDF FFT processor. Also, compared with the 8-channel MR-2/2/2/4/2/4/2 MDC processor and 8-channel MR-2/2/2/8/8 MDC processor, it is shown that the gate count is reduced by 18% and 17% respectively.

A study of Development of Transmission Systems for Terrestrial Single Channel Fixed 4K UHD & Mobile HD Convergence Broadcasting by Employing FEF (Future Extension Frame) Multiplexing Technique (FEF (Future Extension Frame) 다중화 기법을 이용한 지상파 단일 채널 고정 4K UHD & 이동 HD 융합방송 전송시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.310-339
    • /
    • 2015
  • In this paper, the possibility of a terrestrial fixed 4K UHD (Ultra High Definition) and mobile HD (High Definition) convergence broadcasting service through a single channel employing the FEF (Future Extension Frame) multiplexing technique in DVB (Digital Video Broadcasting)-T2 (Second Generation Terrestrial) systems is examined. The performance of such a service is also investigated. FEF multiplexing technology can be used to adjust the FFT (fast Fourier transform) and CP (cyclic prefix) size for each layer, whereas M-PLP (Multiple-Physical Layer Pipe) multiplexing technology in DVB-T2 systems cannot. The convergence broadcasting service scenario, which can provide fixed 4K UHD and mobile HD broadcasting through a single terrestrial channel, is described, and transmission requirements of the SHVC (Scalable High Efficiency Video Coding) technique are predicted. A convergence broadcasting transmission system structure is described by employing FEF and transmission technologies in DVB-T2 systems. Optimized transmission parameters are drawn to transmit 4K UHD and HD convergence broadcasting by employing a convergence broadcasting transmission structure, and the reception performance of the optimized transmission parameters under AWGN (additive white Gaussian noise), static Brazil-D, and time-varying TU (Typical Urban)-6 channels is examined using computer simulations to find the TOV (threshold of visibility). From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static fixed and very fast fading multipath channel.