• 제목/요약/키워드: Sb-Bi-Te system

검색결과 7건 처리시간 0.023초

방전플라즈마 소결된 Bi0.5Sb1.5Te3의 열/전기적 특성 (The Electric and Thermal Properties of Spark Plasma Sintered Bi0.5Sb1.5Te3)

  • 이길근;최영훈;하국현
    • 한국분말재료학회지
    • /
    • 제19권4호
    • /
    • pp.285-290
    • /
    • 2012
  • The present study was focused on the analysis of the electric and thermal properties of spark plasma sintered $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric material. The crystal structure, microstructure, electric and thermal properties of the sintered body were evaluated by measuring XRD, SEM, electric resistivity, Hall effect and thermal conductivity. The $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic crystal structure. The c-axis of the $Bi_{0.5}Sb_{1.5}Te_3$ crystal aligned in a parallel direction with applied pressure during spark plasma sintering. The degree of the crystal alignment increased with increasing sintering temperature and sintering time. The electric resistivity and thermal conductivity of the $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic characteristics result from crystal alignment.

Influence of Sn/Bi doping on the phase change characteristics of $Ge_2Sb_2Te_5$

  • Park T.J.;Kang M.J.;Choi S.Y.
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.93-98
    • /
    • 2005
  • Rewritable optical disk is one of the essential data storage media in these days, which takes advantage of the different optical properties in the amorphous and crystalline states of phase change materials. As well known, data transfer rate is one of the most important parameter of the phase change optical disks, which is mostly limited by the crystallization speed of recording media. Therefore, we doped Sn/Bi to $Ge_2Sb_2Te_5$ alloy in order to improve the crystallization speed and investigated the dependence of phase change characteristics on Sn/Bi doping concentration. The Sn/Bi doped $Ge_2Sb_2Te_5$ thin film was deposited by RF magnetron co-sputtering system and phase change characteristics were investigated by X-ray diffraction (XRD), static tester, UV-visible spectrophotometer, electron probe microanalysis (EPMA), inductively coupled plasma mass spectrometer (ICP-MS) and atomic force microscopy (AFM). Optimum doping concentration of Bi and Sn were 5${\~}$6 at.$\%$ and the minimum time for crystallization was below than 20 ns. This improvement is correlated with the simple crystalline structure of Sn/Bi doped $Ge_2Sb_2Te_5$ and the reduced activation barrier arising from Sn/Bi doping. The results indicate that Sn/Bi might play an important role in the transformation kinetics of phase change materials..

  • PDF

비정질 Sb-Bi-Te 박막의 전기적 특성에 관한 연구 (A Study on the Electrical Properties of Amorphous Sb-Bi-Te Thin Films)

  • 이준신;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.220-226
    • /
    • 2002
  • Amorphous $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5 and 1.0) thin films were prepared by vacuum evaporation. The resistivity of 7he films decreases from 1.4{\times}10^{-2}$ to $8.84{\times}10^{-5}\Omega cm$ and the type of conductivity changes from p to n with the increase of the x value of the films. D.C. conduction studies on these films ate performed at various electric fields in the temperature range of 303-403 K. At low electric fields, two types of conduction mechanisms, i.e. the variable range hopping and the phonon assisted hopping are found to be responsible for the conduction, depending upon the temperature. The activation energy decreases from 0.082 to 0.076 eV in the temperature range of 303-363 K and from 0.47-0.456 eV in the second range of 363-403 K, indicating the shift of the Fermi level towards the conduction band edge and hence the change of the conduction from P to n type with the increase of the Bi concentration. Poole-Frankel emission dominates at high fields. The shape of the potential well of the localized centre is deduced and the mean free path of the charge carriers is also calculated.

복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구 (Experimental fabrication and analysis of thermoelectric devices)

  • 성만영;송대식;배원일
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

마이크로 열전냉각기의 열성능에 대한 열전소자 두께의 영향 (Effect of the Thermoelectric Element Thickness on the Thermal Performance of the Thermoelectric Micro-Cooler)

  • 이공훈;김욱중
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.211-217
    • /
    • 2006
  • The three-dimensional numerical analysis has been carried out to figure out the effect of the thermoelectric element thickness on the thermal performance of the thermo-electric micro-cooler. The small-size and column-type thermoelectric cooler is considered. It is known that tellurium compounds currently have the highest cooling performance around the room temperature. Thus, in the present study, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ are selected as the n- and p-type thermoelectric materials, respectively. The thermoelectric leg considered is less than $20{\mu}m$ thick. The thickness of the leg may affect the thermal and electrical transport through the interfaces between the leg and metal conductors. The effect of the thermoelectric element thickness on the thermal performance of the cooler has been investigated with parameters such as the temperature difference, the current, and the cooling power.

Multi-physics analysis for the design and development of micro-thermoelectric coolers

  • Han, Seung-Woo;Hasan, MD Anwarul;Kim, Jung-Yup;Lee, Hyun-Woo;Lee, Kong-Hoon;Kim, Oo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.139-144
    • /
    • 2005
  • A rigorous research is underway in our team, for the design and development of high figure of merits (ZT= 1.5${\sim}$2.0) micro-thermoelectric coolers. This paper discusses the fabrication process that we are using for developing the $Sb_2Te_3-Bi_2Te_3$ micro-thermoelectric cooling modules. It describes how to obtain the mechanical properties of the thin film TEC elements and reports the results of an equation-based multiphysics modeling of the micro-TEC modules. In this study the thermoelectric thin films were deposited on Si substrates using co-sputtering method. The physical mechanical properties of the prepared films were measured by nanoindentation testing method while the thermal and electrical properties required for modeling were obtained from existing literature. A finite element model was developed using an equation-based multiphysics modeling by the commercial finite element code FEMLAB. The model was solved for different operating conditions. The temperature and the stress distributions in the P and N elements of the TEC as well as in the metal connector were obtained. The temperature distributions of the system obtained from simulation results showed good agreement with the analytical results existing in literature. In addition, it was found that the maximum stress in the system occurs at the bonding part of the TEC i.e. between the metal connectors and TE elements of the module.

  • PDF