• Title/Summary/Keyword: Saw-tooth Wave

Search Result 15, Processing Time 0.016 seconds

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.

Changes in Heating Profiles of Apple Juice by Ohmic Heating (통전가열(Ohmic Heating) 처리조건에 따른 사과주스의 가열속도 변화)

  • Kim, Kyung-Tack;Choi, Hee-Don;Kim, Sung-Soo;Hong, Hee-Do
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.431-436
    • /
    • 1998
  • The optimum ohmic heating condition of apple juice was investigated with model solution. The temperature rise of model solution was found to be $7.8,\;21.0,\;47.4^{\circ}C/min$ when the distances between electrodes were 29, 22, and 17mm, respectively. The heating rate increased proportionally with the numbers of electrode pairs, 1 to 3 and highly dependent on applied voltage. The heating rate was not affected by the frequencies ranged from 60 Hz to 60 KHz and the wave form of applied alternating electric current. The apple juices prepared by ohmic heating sterilization revealed similar physicochemical properties to that by commercial sterilization.

  • PDF

Development of Optical Frequency Modulated Fiber Optic Interferometric Sensor (광주파수 변조 광섬유 간섭형 센서의 개발)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Kim, Min-Soo;Lee, Wang-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Optical frequency modulated fiber optic interferometric sensor was developed to sense the mechanical quantities, such as displacement, strain, force etc. It has been difficult to distinguish whether the increase of the mechanical quantities or the decrease of the quantities measured by the conventional fiber optic interferometric sensors because their signals only have a sinusoidal wave pattern related to the change of mechanical quantities. In this study, in order to measure the mechanical quantifies with the distinction of the changing direction of the quantities, the fiber of optic Michelson interferometric sensor was simply constructed by the laser light modulated with saw tooth wave pattern. The output signal of the sensor was controlled as the sinusoidal wave. The signal processing was based on the counting of the wave number of the output signal during constant time duration. The strain was determined by the cumulative value of the wave number producted by the gage factor. In order to verify the strain measurement capability of this sensor, the strain increase-decrease test was performed by universal testing machine installed with the aluminum specimen bonded with the fiber optic sensor and electrical strain gage. In the result of the test, the strain from the fiber optic sensor had a good agreement with the values from the electrical strain gage.

  • PDF

Design and Manufacture of FMCW Radar with Multi-Frequency Bandwidths (다중 대역폭을 갖는 FMCW 레이다 송수신기 설계 및 제작)

  • Hwang, Ji-hwan;Kim, Seung Hee;Kang, Ki-mook;Kim, Duk-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.377-387
    • /
    • 2016
  • Design of X-band frequency FMCW based imaging radar with multi-resolutions and performances of the self-manufactured radar system are presented in this study. In order to implement the multi-bandwidths, a ramp sequence of the FMCW signal is consisting of two kinds of 'saw-tooth' waveform with different bandwidth, and a receiver circuit consisting of L-band source and frequency converter circuit is used to effectively extract spectra of beat-frequency from the received signal of X-band frequency. The system setups for performance measurement of self-manufactured radar system are maximum output power of 35 dBm, sampling frequency of 1.2 MHz and sweep time of 1 ms. Then, the measured resolutions of the modulated signal having bandwidth of 500 MHz and 300 MHz in range & azimuth-direction are (0.28 m, 0.26 m) and (0.44 m, 0.27 m), respectively.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures Against Beach Erosion III - Centering on the Effects of Random Waves Occurring During the Unit Observation Period, and Infra-Gravity Waves of Bound Mode, and Boundary Layer Streaming on the Sediment Transport (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 III - 단위 관측 기간에 발생하는 불규칙 파랑과 구속모드의 외중력파, 경계층 Streaming이 횡단표사에 미치는 영향을 중심으로)

  • Chang, Pyong Sang;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.434-449
    • /
    • 2019
  • In this study, we develop a new cross-shore sediment module which takes the effect of infra-gravity waves of bound mode, and boundary layer streaming on the sediment transport into account besides the well-known asymmetry and under-tow. In doing so, the effect of individual random waves occurring during the unit observation period of 1 hr on sediment transport is also fully taken into account. To demonstrate how the individual random waves would affect the sediment transport, we numerically simulate the non-linear shoaling process of random wavers over the beach of uniform slope. Numerical results show that with the consistent frequency Boussinesq Eq. the application of which is lately extended to surf zone, we could simulate the saw-tooth profile observed without exception over the surf zone, infra-gravity waves of bound mode, and boundary-layer streaming accurately enough. It is also shown that when yearly highest random waves are modeled by the equivalent nonlinear uniform waves, the maximum cross-shore transport rate well exceeds the one where the randomness is fully taken into account as much as three times. Besides, in order to optimize the free parameter K involved in the long-shore sediment module, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach from 2017.4.26 to 2018.4.20 as well, and proceeds to optimize the K by comparing the traced shoreline change with the measured one. Numerical results show that the optimized K for Mang-Bang beach would be 0.17. With K = 0.17, via yearly grand circulation process comprising severe erosion by consecutively occurring yearly highest waves at the end of October, and gradual recovery over the winter and spring by swell, the advance of shore-line at the northern and southern ends of Mang-Bang beach by 18 m, and the retreat of shore-line by 2.4 m at the middle of Mang-Bang beach can be successfully duplicated in the numerical simulation.