• Title/Summary/Keyword: Savitzky-Golay method

Search Result 29, Processing Time 0.023 seconds

Number of sampling leaves for reflectance measurement of Chinese cabbage and kale

  • Chung, Sun-Ok;Ngo, Viet-Duc;Kabir, Md. Shaha Nur;Hong, Soon-Jung;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.169-175
    • /
    • 2014
  • Objective of this study was to investigate effects of pre-processing method and number of sampling leaves on stability of the reflectance measurement for Chinese cabbage and kale leaves. Chinese cabbage and kale were transplanted and cultivated in a plant factory. Leaf samples of the kale and cabbage were collected at 4 weeks after transplanting of the seedlings. Spectra data were collected with an UV/VIS/NIR spectrometer in the wavelength region from 190 to 1130 nm. All leaves (mature and young leaves) were measured on 9 and 12 points in the blade part in the upper area for kale and cabbage leaves, respectively. To reduce the spectral noise, the raw spectral data were preprocessed by different methods: i) moving average, ii) Savitzky-Golay filter, iii) local regression using weighted linear least squares and a $1^{st}$ degree polynomial model (lowess), iv) local regression using weighted linear least squares and a $2^{nd}$ degree polynomial model (loess), v) a robust version of 'lowess', vi) a robust version of 'loess', with 7, 11, 15 smoothing points. Effects of number of sampling leaves were investigated by reflectance difference (RD) and cross-correlation (CC) methods. Results indicated that the contribution of the spectral data collected at 4 sampling leaves were good for both of the crops for reflectance measurement that does not change stability of measurement much. Furthermore, moving average method with 11 smoothing points was believed to provide reliable pre-processed data for further analysis.

Development of a classification model for tomato maturity using hyperspectral imagery

  • Hye-Young Song;Byeong-Hyo Cho;Yong-Hyun Kim;Kyoung-Chul Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.129-136
    • /
    • 2022
  • In this study, we aimed to develop a maturity classification model for tomatoes using hyperspectral imaging in the range of 400 - 1,000 nm. Fifty-seven tomatoes harvested in August and November of 2021 were used as the sample set, and hyperspectral data was extracted from the surfaces of these tomatoes. A combined method of SNV (standard normal variate) and SG (Savitzky-Golay) methods was used for the pre-processing of the hyperspectral data. In addition, the hyperspectral data were analyzed for all maturity stages and considering bandwidths with different FWHM (full width at half maximum) values of 2, 25, and 50 nm. The PCA (principal component analysis) method was used to analyze the principal components related to maturity stages for the tomatoes. As a result, 500 - 550 nm and 650 - 700 nm bands were found to be related to the maturity stages of tomatoes. In addition, PC1 and PC2 explained approximately 97% of the variance at all FWHM conditions and thus were used as input data for classification model training based on the SVM (support vector machine). The SVM models were able to classify tomato maturity into five stages (Green, Turning, Pink, Light red, and Red) with over 95% accuracy regardless of the FWHM condition. Therefore, it was considered that hyperspectral data with 50 nm FWHM and SVM is feasible for use in the classification of tomato maturity into five stages.

Resistive E-band Textile Strain Sensor Signal Processing and Analysis Using Programming Noise Filtering Methods (프로그래밍 노이즈 필터링 방법에 의한 저항 방식 E-밴드 텍스타일 스트레인 센서 신호해석)

  • Kim, Seung-Jeon;Kim, Sang-Un;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2022
  • Interest in bio-signal monitoring of wearable devices is increasing significantly as the next generation needs to develop new devices to dominate the global market of the information and communication technology industry. Accordingly, this research developed a resistive textile strain sensor through a wetting process in a single-wall carbon nanotube dispersion solution using an E-Band with low hysteresis. To measure the resistance signal in the E-Band to which electrical conductivity is applied, a universal material tester, an Arduino, and LCR meters that are microcontroller units were used to measure the resistance change according to the tensile change. To effectively handle various noises generated due to the characteristics of the fabric textile strain sensor, the filter performance of the sensor was evaluated using the moving average filter, Savitsky-Golay filter, and intermediate filters of signal processing. As a result, the reliability of the filtering result of the moving average filter was at least 89.82% with a maximum of 97.87%, and moving average filtering was suitable as the noise filtering method of the textile strain sensor.

Near-IR TRGB Distance to Nearby Dwarf Irregular Galaxy NGC 6822

  • Sohn, Y.J.;Kang, A.;Han, W.;Park, J.H.;Kim, H.I.;Kim, J.W.;Shin, I.G.;Chun, S.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.249-254
    • /
    • 2008
  • We report the distance modulus of nearby dwarf irregular galaxy NGC 6822 estimated from the so-called Tip of Red-giant Branch (TRGB) method. To detect the apparent magnitudes of the TRGB we use the color-magnitude diagrams (CMDs) and luminosity functions (LFs) in the near-infrared JHK bands. Foreground stars, main-sequence stars, and supergiant stars have been classified on the (g - K, g) plane and removed on the near-infrared CMDs, from which only RGB and AGB stars are remained on the CMDs and LFs. By applying the Savitzky-Golay filter to the obtained LFs and detecting the peak in the second derivative of the observed LFs, we determined the apparent magnitudes of the TRGB. Theoretical absolute magnitudes of the TRGB are estimated from Yonsei-Yale isochrones with the age of 12Gyr and the metallicity range of -2.0 <[Fe/H]< -0.5. The derived values of distance modulus to NGC 6822 are (m - M) = $23.35{\pm}0.26$, $23.20{\pm}0.42$, and $23.27{\pm}0.50$ for J, H, and K bands, respectively. Distance modulus in bolometric magnitude is also derived as (m - M) = $23.41{\pm}0.17$. We compare the derived values of the TRGB distance modulus to NGC 6822 in the near-infrared bands with the previous results in other bands.

Bioprocess Control for Continuous Culture of Dunaliella Salina in Flat Panel Photobioreactor (평판형 광생물반응기의 Dunaliella Salina 연속배양을 위한 생물공정 제어)

  • Kim, Gwang Ho;Ahn, Dong-Gyu;Park, Jong Rak;Choi, Gang Hun;Kim, Jong Tye;Kim, Ki Won;Jeong, Sang Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • The indiscriminate use of the fossil fuel has caused serious environmental pollutions such as the shortage of energy and global warming. Microalgae have being emphasized as $3^{rd}$ generation biomass which makes the carbon dioxide reduce effectively as well as produces the biofuel. Large scale production of microbial biomass by continuous culture is a quite challenging issue, because off-line optimization strategies of a microbial process utilizing a model-based scheme give rise to many difficult problems. In this paper, the static and simple control method which was able to be applied in time-variant growth environment and large scale of algae culture was studied. The significant disturbances in on-line measurement of cell density were reduced by Savitzky-Golay FIR smoothing filter. Dunaliella salina was cultivated continuously in a flat panel photobioreactor by the on-off control of the turbidostat process.

Rancidity Prediction of Soybean Oil by Using Near-Infrared Spectroscopy Techniques

  • Hong, Suk-Ju;Lee, Ah-Yeong;Han, Yun-hyeok;Park, Jongmin;So, Jung Duck;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.219-228
    • /
    • 2018
  • Purpose: This study evaluated the feasibility of a near-infrared spectroscopy technique for the rancidity prediction of soybean oil. Methods: A near-infrared spectroscopy technique was used to evaluate the rancidity of soybean oils which were artificially deteriorated. A soybean oil sample was collected, and the acid values were measured using titrimetric analysis. In addition, the transmission spectra of the samples were obtained for whole test periods. The prediction model for the acid value was constructed by using a partial least-squares regression (PLSR) technique and the appropriate spectrum preprocessing methods. Furthermore, optimal wavelength selection methods such as variable importance in projection (VIP) and bootstrap of beta coefficients were applied to select the most appropriate variables from the preprocessed spectra. Results: There were significantly different increases in the acid values from the sixth days onwards during the 14-day test period. In addition, it was observed that the NIR spectra that exhibited intense absorption at 1,195 nm and 1,410 nm could indicate the degradation of soybean oil. The PLSR model developed using the Savitzky-Golay $2^{nd}$ order derivative method for preprocessing exhibited the highest performance in predicting the acid value of soybean oil samples. onclusions: The study helped establish the feasibility of predicting the rancidity of the soybean oil (using its acid value) by means of a NIR spectroscopy together with optimal variable selection methods successfully. The experimental results suggested that the wavelengths of 1,150 nm and 1,450 nm, which were highly correlated with the largest absorption by the second and first overtone of the C-H, O-H stretch vibrational transition, were caused by the deterioration of soybean oil.

Hyperspectral imaging technique to evaluate the firmness and the sweetness index of tomatoes

  • Rahman, Anisur;Park, Eunsoo;Bae, Hyungjin;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.823-837
    • /
    • 2018
  • The objective of this study was to evaluate the firmness and the sweetness index (SI) of tomatoes with a hyperspectral imaging (HSI) technique within the wavelength range of 1000 - 1550 nm. The hyperspectral images of 95 tomatoes were acquired with a push-broom hyperspectral reflectance imaging system, from which the mean spectra of each tomato were extracted from the regions of interest. The reference firmness and sweetness index of the same sample was measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing methods. The calibration model developed by PLS regression based on the Savitzky-Golay second-derivative preprocessed spectra resulted in a better performance for both the firmness and the SI of the tomatoes compared to models developed by other preprocessing methods. The correlation coefficients ($R_{pred}$) were 0.82, and 0.74 with a standard error of prediction of 0.86 N, and 0.63, respectively. Then, the feature wavelengths were identified using a model-based variable selection method, i.e., variable importance in projection, from the PLS regression analyses. Finally, chemical images were derived by applying the respective regression coefficients on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on the firmness and the SI of the tomatoes. The results show that the proposed HSI technique has potential for rapid and non-destructive evaluation of firmness and the sweetness index of tomatoes.

Analysis of Applicability by Filter Technique for Water Level Correction of Agricultural Canal (농업용 수로부의 수위 보정을 위한 필터기법별 적용성 분석)

  • Joo, Donghyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-hoon;Yun, Hyung Chang;Park, Sang-Bin;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.51-68
    • /
    • 2023
  • Due to the recent integrated water management policy, it is important to identify a reliable supply amount for establishing an agricultural water supply plan. In order to identify the amount of agricultural water supply, it is essential to calculate the discharge by measuring the water level and flow velocity of reservoirs and canal agricultural water, and quality control to ensure reliability must be preceded. Unlike agricultural reservoirs, canal agricultural water are more sensitive to the surrounding environment and reservoir irrigation methods (continuous, intermittent irrigation, etc.), making it difficult to estimate general water level patterns and at the same time a lot of erroneous data. The Korea Rural Community Corporation is applying a filter technique as a quality control method capable of processing large quantities and real-time processing of canal agricultural water level data, and applicability evaluation is needed. In this study, the types of errors generated by the automatic water level measurement system were first determined. In addition, by using the manual quality control data, a technique with high applicability is derived by comparing and analyzing data calibrated with Gaussian, Savitzky-Golay, Hampel, and Median filter techniques, RMSE, and NSE, and the optimal parameters of the technique range was derived. As a result, the applicability of the Median filter was evaluated the highest, and the optimal parameters were derived in the range of 120min to 240min. Through the results of this study, it is judged that it can be used for quantitative evaluation to establish an agricultural water supply plan.

The study of quantitative analytical method for pH and moisture of Hanji record paper using non-destructive FT-NIR spectroscopy (비파괴 분석 방법인 푸리에 변환 근적외선 분광 분석을 이용한 한지 기록물의 산성도 및 함수율 정량 분석 연구)

  • Shin, Yong-Min;Park, Soung-Be;Lee, Chang-Yong;Kim, Chan-Bong;Lee, Seong-Uk;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • It is essential to evaluate the quality of Hanji record paper without damaging the record paper by previous destructive methods. The samples were Hanji record paper produced in the 1900s. Near-infrared (NIR) spectrometer was used as a non destructive method for evaluating the quality of record papers. Fourier transform (FT) spectrometer was used with 12,500 to 4,000 $cm^{-1}$ wavenumber range for quantitative analysis and it has high accuracy and good signal-to-noise ratio. The acidity and moisture content of Hanji record paper were measured by integrating sphere as diffuse reflectance type. The acidity (pH) of chemical factors as a quality evaluated factor of Hanji was correlated to NIR spectrum. The NIR spectrum was pretreated to obtain the coefficients of optimum correlation. Multiplicative scatter correction (MSC) and First derivative of Savitzky-Golay were used as pretreated methods. The coefficients of optimum correlation were calculated by PLSR (partial least square regression). The correlation coefficients ($R^2$) of acidity had 0.92 on NIR spectra without pretreatment. Also the standard error of prediction (SEP) of pH was 0.24. And then the NIR spectra with pretreatment would have better correlation coefficient ($R^2$ = 0.98) and 0.19 as SEP on pH. For moisture contents, the linearity correlation without pretreatment was higher than the case with pretreatment (MSC, $1^{st}$ derivative). As the best result, the $R^2$ was 0.99 and SEP was 0.45. This indicates that it is highly proper to evaluate the quality of Hanji record papers speedily with integrated sphere and FT NIR analyzer as a non-destructive method.