• Title/Summary/Keyword: Saturation rate

Search Result 806, Processing Time 0.032 seconds

Effects of Operating Parameters on Dissolved Ozone and Phenol Degradation in Ozone Contact Reactor (오존 접촉 반응기의 용존 오존 농도 및 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Park, Jeong-Wook;Lee, Chun-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.241-247
    • /
    • 2010
  • The Effects of operating parameters such as initial pH, gaseous ozone concentration, supplied gas flow rate on dissolved ozone concentration and phenol degradation in ozone contact reactor were investigated. Dissolved ozone concentrations were saturated to constant values after a certain ozone contact time. The saturation values were influenced by experimental parameters. Dissolved ozone concentration decreased with the increase of initial pH because the ozone is unstable in high pH regions. The gaseous ozone concentration in a constant gas supply affected the saturation concentration of dissolved ozone and the injection rate of gas with a constant ozone concentration determined the rate to reach dissolved ozone saturation. Effects of operating parameters on phenol degradation were closely related with those of parameters on dissolved ozone concentration. Phenol degradation was enhanced by the increase of initial pH, because the degradation of dissolved ozone gave birth to free radicals which have much higher reactivity with phenol. Increase of gaseous ozone concentration and gas flow rate promoted the phenol degradation through the generation of dissolved ozone which plays the role in phenol degradation. The injection of methanol deteriorated the phenol degradation through the scavenging effect on OH radicals.

A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN (무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석)

  • Lee, Yong-Sik;Lee, Ha-Cheol;Lee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.741-753
    • /
    • 2008
  • This paper explores the throughput performance of CSMA/CA-based DCF protocol over both ideal channels and fading channels with payload size at the MAC layer in the 802.11a wireless LAN. In the ideal channel, there are no errors and at the transmission cycle there is one and only one active station which always has a packet to send and other stations can only accept packets and provide acknowledgements. In the fading channel, bit errors appear in the channel randomly and the number of stations is assumed to be fixed. And each station always has packets for transmission. In other words, we operate in saturation conditions. Up to now conventional research work about DCF throughput analysis of IEEE 802.11 a wireless LAN has been done over the ideal channel, but this paper is done over the Rayleigh/Ricean fading channel. So, the ratio of received average energy per bit-to-noise power spectral density $E_b/N_o$ is set to 25 dB and the ratio of direct-to-diffuse signal power in each sub-channel $\xi$ is set to 6 for combined Rayleigh/Ricean fading channel. In conclusion, it is shown that the saturation throughput is always less than the maximum throughput at all the payload size and the higher the transmission rate be, the higher the decreasing rate of saturation throughput compared to the maximum throughput be.

Responses in Net Photosynthetic Rate of Quercus mongolica Leaves to Ozone (오존에 대한 신갈나무 잎의 순광합성능의 반응)

  • Kim, Jong Wook;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.2
    • /
    • pp.265-273
    • /
    • 1995
  • Net photosynthetic rate (Pn) of Quercus mongolica leaves was determined under the controlled O₃concentrations of 0, 20, 30, 40, 50 or 60 ppb at every 10 min for 7 hr. Under the fumigation of the different O₃concentrations the relative net photosynthetic rate (RNPR) of the leaves decreased rapidly until 1 hr and thereafter decreased slowly. At below 20 ppb O₃the decrease of the RNPR was scarce but at above 20 ppb O₃the RNPR was inversely proportional to O₃concentration on a logarithmic curve. The RNPR at 60 ppb O₃, for example, was reduced 30% less than that without O₃. Under the different O₃concentrations fumigated for the short period of time the Pn dependent upon PPFD was depicted as saturation equation and Pn dependent upon temperature as quadratic equation. Results of this study suggest that short-term low O₃of less than 60 ppb concentration may lead to reductions of Pn in Q. mongolica leaves.

  • PDF

Effect of p-layer in Solar cells DIV characteristics using defferent gas flow rate (Gas flow rate에 따른 p-layer의 특성변화가 태양전지 DIV 곡선에 미치는 영향 분석)

  • Park, S.M.;Lee, Y.S.;Lee, B.S.;Lee, D.H.;Yi, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.253-255
    • /
    • 2009
  • 박막태양전지에서 빛을 처음 받아들이는 p-layer는 전체적인 태양전지 특성에 큰 영향을 준다. 본 논문에서는 p-layer의 gas flow rate를 가변하여 증착한 P-I-N cell을 통해 DIV를 측정하고 분석하였다. 더불어 gas flow rate에 따른 p-layer의 특성변화를 토대로 시뮬레이션을 진행하여 실제 소자와 비교하여 보았다. simulation da와 experimental data를 비교해보면 전체적으로 유사한 경향성을 보이며 saturation current는 큰 차이를 보이지 않았으나 ideality factor와 series resistance에서 real device가 비교적 큰 값을 나타내는 것을 볼 수 있었다. 본 연구는 simulation data를 기반으로 real device를 제작하는데 큰 도움이 될 것이다.

  • PDF

Reductive Dechlorination of Low Concentration Polychlorinated Biphenyls as Affected by a Rhamnolipid Biosurfactant

  • Kim, Jong-Seol;Frohnhoefer, Robert C.;Cho, Young-Cheol;Cho, Du-Wan;Rhee, G-Yull
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1564-1571
    • /
    • 2008
  • We investigated whether the threshold concentration for polychlorinated biphenyl (PCB) dechlorination may be lower in biosurfactant-amended sediments compared with biosurfactant-free samples. At PCB concentrations of 40, 60, and 120 ppm, the surfactant amendment enhanced the PCB dechlorination rate at all concentrations and the rate was also faster at higher concentrations. On a congener group basis, dechlorination proceeded largely with group A (congeners with low threshold) in both surfactant-free and -amended sediments, accumulating mainly group C (residual products of dechlorination) congeners, and surfactant enhanced the dechlorination rate of group A congeners. Since the PCB threshold concentration for the inoculum in the experiment was lower than 40 ppm, we carried out another experiment using sediments with lower PCB concentrations, 10, 20, and 30 ppm. Sediments with 100 ppm were also performed to measure dechlorination at a PCB saturation concentration. Comparison between the plateaus exhibited that the extent of dechlorination below 40 ppm PCBs was much lower than that at a saturation concentration of 100 ppm. There was no significant difference in the extent of dechlorination between surfactant-free and -amended sediments. Moreover, surfactant did not change the congener specificity or broaden the congener spectrum for dechlorination at PCB concentrations below 40 ppm. Taken together, it seems that at a given PCB concentration, dechlorination characteristics of dechlorinating populations may be determined by not only the congener specificity of the microorganisms but also the affinity of dechlorinating enzyme(s) to individual PCB congeners.

Recommendation of P and K Fertilizers for Crops Based on Soil Testing (토양분석치(土壤分析値)에 의(依)한 작물별(作物別) 인산(燐酸) 및 가리시비량(加里施肥量) 결정법(決定法))

  • Hong, Chong Woon;Kim, Yung Sup;Kim, Yung Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.29-31
    • /
    • 1973
  • Upon the assumption that the available components in the soil evaluated by present analytical procedures, are as effective as the components applied to the soil as fertilizer, some formulas for the calculation of fertilizer requirements (F. R) for crops are suggested. Basically, the formulas are derived by combining the country average values of soil test data(${\overline{ST}}$) and of the optimum rate of fertilizers (ORF) for crops obtained from N.P.K. trials in farmer's field, as following. $$F.R(kg/10a)={\overline{ST}}(kg/10a)+ORFkg/10a-ST(kg/10a)$$ where, ST denotes the available components tested in the soil under question. Although this formula can be used both for P and K fertilizers, considering the significance of the potassium saturation rate of the soil for the availability of K, for the calculation of K fertilizer requirement, following formula is suggested. $$F.R(kg/10a)=(C.E.C.{\times}B.S.R.K.-KST(me/100g){\times}CF$$ where, B. S. R. K. is the basic potassium saturation rate of the soil and CF is conversion factor for the conversion of K me/100g into $K_2O$ kg/10a. The B. S. R. K. for different crops are obtained from the country average values of soil exchangeable K (${\overline{KST}}$), cation exchange capacity (CEC) and the optimum rates of K fertilizers for crops (ORF $K_2O$). $$B.S.R.K.=\frac{{\overline{KST}}{\times}CF+ORF(K_2O)}{CEC{\times}CF}$$ Using these formulas, equations for P and K fertilizer requirements for rice, barley, wheat, corn, italian millet, soy bean, sweet potato, potato and rape are derived.

  • PDF

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

The Study on the Characteristics of the Load Sharing in SRM with the Parallel Operation of Phase Winding (병렬권선 운전시 SRM의 부하분담 특성에 관한 연구)

  • Lee, Sang-Hun;Park, Sung-Jun;Choi, Cheol;Ahn, Jin-Woo;Kim, Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.30-39
    • /
    • 2003
  • In SRM driving, the current rate is directly related to the rate of switching device and in cost reduction, the Parallel switching operation is the alternatives because it has the smaller current rate through current division. There ire many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. The reason Is that the switching characteristics are mainly relied on the different saturation voltage of each device etc. and these factors are not altered by a circuit designer. In order to compensate this problem, a proper resistance is experimently inserted to the switching device. But this method can not be the optimal solution. Therefore this paper propose a new parallel operation of SRM which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. Also the reliable and stable driving is improved through experiments and the detailed principles.

Adsorption Kinetic Constants for Basic Odorant on Pellet-type Adsorbents Recycled from Water-treatment Sludge (정수 슬러지를 재활용한 펠렛형 흡착제 상에서 염기성 악취 물질의 흡착속도상수)

  • Kim, Goun;Park, Nayoung;Bae, Junghyun;Jeon, Jong-Ki;Lee, Choul Ho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.167-173
    • /
    • 2014
  • The adsorption characteristics of the pellet-type adsorbent prepared from water treatment sludge for trimethylamine and ammonia were studied. The surface area and pore volume of the pellet-type adsorbent increased during calcination at $500^{\circ}C$. It was confirmed that the adsorbent prepared from water treatment sludge contained Br$\ddot{o}$nsted and Lewis acid sites. The breakthrough time of the adsorbent for both trimethylamine and ammonia was measured at different adsorbent weights and linear velocities while maintaining constant amounts of trimethylamine and ammonia. The kinetic saturation capacity and the adsorption rate constant for trimethylamine and ammonia were determined at different linear velocities by using the Wheeler equation. It was found that the kinetic saturation capacity and the adsorption rate constant were dependent on the linear velocity. An experimental equation could be derived to predict the breakthrough time of the adsorbent prepared from water treatment sludge for trimethylamine and ammonia at different adsorption conditions.

Effects of pH, Amino Acids and Hydrolyzed Proteins on Caramelization of Starch Syrup (물엿의 Caramel 반응 중 아미노산과 가수분해 단백질 첨가의 영향)

  • Park, Cheon-Woo;Kang, Kun-Og;Lee, Jung-Kun;Kim, Woo-Jung
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.152-155
    • /
    • 1999
  • Effects of pH, amino acids, hydrolyzed protein and potassium phosphate on caramelization were investigated for improvement of its reaction rate. The caramelization was performed with starch syrup at $110^{\circ}C$ and the different color functions-metric saturation(Suv), 5-hydroxymethylfurfural (HMF) contents and absorbance at 420 nm were measured. As the pH was raised from 4 to 10, the reaction rate (Suv/hr) was increased by 31.9% along with significant increase in HMF content and absorbances at 420 nm. Among the several amino acids, arginine and glycine were very effective for improvement of caramelization, which may be due to Maillard reaction. When $K_2HPO_4$ were added in different ratio with arginine, glycine, HVP or HAP, the effects of arginine and HAP on thee rate were markedly enhanced while the effects of glycine and HVP were rather reduced.

  • PDF