• Title/Summary/Keyword: Saturation magnetization($M_S$)

Search Result 90, Processing Time 0.026 seconds

Effect of Magnetic Property Modification on Current-Induced Magnetization Switching with Perpendicular Magnetic Layers and Polarization-Enhancement Layers

  • Kim, Woo-Jin;Lee, Kyung-Jin;Lee, Taek-Dong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.104-107
    • /
    • 2009
  • The effects of the magnetic property variation on current-induced magnetization switching in magnetic tunnel junction with perpendicular magnetic anistoropy (PMA) and the soft magnetic polarization-enhancement layers (PELs) inserted between the layers with PMA and the MgO layer was studied. A micromatnetic model was used to estimate the switching time of the free layer by different applied current densities, with changing saturation magnetization ($M_s$) of the PELs, interlayer exchange coupling between PMA layers and PELs. The switching time could be significantly reduced at low current densities, by increasing $M_s$ of PELs and decreasing interlayer exchange coupling.

SOFT MAGNETISM OF Co-Zr AND Fe-Co FILMS WITH LARGE SATURATION MAGNETIZATION

  • Suemitsu, Katsumi;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.628-633
    • /
    • 1996
  • Large saturation magnetization $4pM_s$ is essentially required for soft magnetic thin layers used in magnetic recording devices. Amorphous Co-based alloys and Fe-Co alloys may be regarded as one of the candidates for soft magnetic materials which possess large $4\piM_s$. Some preparation process to improve soft magnetism of these films were performed in this study. Addition of Ta seemed to be effective to change the magnetostriction constant $\lambda$ from positive value to negative one. The magnetoelastic energy $K_e$ is strongly dependent on $\lambda$. $(Co_{95.7}Zr_{4.3})_{100-x}Ta_x$ films with $K_e$ of negative value have sufficiently soft magnetic characteristics. $Fe_{90}Co_{10}$ alloy exhibits extremely large $4\piM_s$, of about 24 kG. Addition of N and Ta to $Fe_{90}Co_{10}$ films improved the soft magnetism of them. The $Fe_{82.0}Co_{7.6}Ta_{10.4}$:N/Ti multilayered films exhibit better soft magnetic properties and better thermal stability than Fe-Co-Ta:N singlelayer films.

  • PDF

THE LOW TEMPERATURE DEPENDENCE OF MAGNETIZATION AND AC SUSCEPTIBILITY OF GLASSY $Fe_{91-x}Zr_{7}B_{2}Ni_{x}$ (x=0,5,10,15) ALLOYS

  • Strom, V.;Kim, K.S.;Jonsson, B.J.;Yu, S.C.;Inoue, A.;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.515-518
    • /
    • 1995
  • We have studied the magnetization in fields up to 1T at 5K, the saturation magnetization dependence on temperature and the temperature dependence of AC-susceptibility at very low fields (5mOe to 50mOe) of glassy $Fe_{91-x}Zr_{7}B_{2}Ni_{x}$ (x = 0, 5, 10, 15) alloys. The temperature dependence of the magnetization follows the predictions of spin wave excitations with long wavelengths. At zero Ni concentration there is a clear competition between ferromagnetic and antiferromagnetic interactions giving rise to spin-glass behaviour. The addition of Ni drastically modifies the magnetic properties: the antiferromagnetic exchange coupling is reduced and finally disappears, the spin wave stiffness increases from 39.5 to $87.3\;meV{\AA}^{2}$ and To increases from 230 K to 478 K. We develop a simple model to quantify the competing interactions and to relate the antiferromagnetically coupled Fe moments to the Ni concentration. We find that the initial susceptibility increases with increasing Ni content along with a decrease of the temperature dependence.

  • PDF

Fabrication of Nanostructured Fe-Co powders by Mechanical Alloying and Their Magnetic Properties (기계적 합금화에 의한 나노구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 정진영
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • A study was made on the fabrication of nanostructured Fe-Co powders by mechanical alloying and their magnetic properties. Microstrural development during the process of MA was inverstigated by means of X-ray diffraction, differential thermal analyzer, scanning electron microscopy and transmission electron microscopy. The magnetic properties of NS Fe-Co powders were evaluated through the measurements of the saturation magnetization $(M_s)$ as well as the coercivity $(H_c)$. The average grain size calculated from line braodening in XRD peak was about 10nm or less and confirmed by TEM. In this experiment, two different milling methods (cycle opertion and conventional milling) were used. Cycle operation had an advantage over the conventional milling method in that more refined powders can be obtained. Solid state alloying of the components was confirmed from both the change of the saturation magnetization and the change of lattice parameter with Co contentration. Maxium $M_s$ was obtained at the composition of 30at.%Co. Relatively high coercivities of 10~150e were obtained for the compositions investigated, and this seems to be due to the high amount of internal strain introduced during milling.

Magnetic Properties of Both Ni-W and (Ni-3%W)-Cu Textured Substrates for ReBCO Coated Conductor (고온초전도 박막선재용 Ni-$W_{xat.%}$ 및 (Ni-$W_{3at.%}$)-$CU_{xat.%}$ 이축배향 금속 기판들의 자기적 특성)

  • Song, K.J.;Kim, T.H.;Kim, H.S.;Ko, R.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.;Park, C.;Yoo, S.I.;Joo, J.H.;Kim, M.W.;Kim, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.28-29
    • /
    • 2006
  • The magnetic properties of a series of both annealed and as-rolled Ni-$W_y$ alloy tapes with compositions y = 0, 1, 3, and 5 at.%, were studied. To compare with Ni-W alloys, the magnetic properties of a series of both annealed and as-rolled $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5 and 7 at.%, were studied, as well. Both the isothermal mass magnetization M(H) of a series of samples, such as both Ni-W and [Ni-W]-Cu alloy tapes, at different fixed temperatures and M(T) in fixed field, were measured using a PPMS-9 (Quantum Design). The degree of ferromagnetism of Ni-$W_y$ alloys have reduced as W-content y increases. Both the saturation magnetization $M_{sat}$ and Curie temperature $T_c$ decrease linearly with W-content y, and both $M_{sat}$ and $T_c$ go to zero at critical concentration of $y_c$ ~ 9.50 at.% W. The effect of Cu addition on both the saturation magnetization $M_sat$ and Curie temperature $T_c$ decrease linearly with Cu-content x in $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5, and 7 at.%. The results confirm that [Ni-W]-Cu alloy tapes can have much reduced ferromagnetism as Cu-content x increases.

  • PDF

GMR and Magnetization Study of Sputtered Permalloy/Cu Multilayer: The Influence of Temperature, Thickness and Number of Magnetic Layer

  • Lucinski, T.;Stobiecki, F.;Urbaniak, M.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.17-21
    • /
    • 1999
  • The GMR ($d_Cu$) oscillatory behaviour as well as the widths of first and the second antiferromagnetically coupled ranges of the Permalloy ($Py=Ni_{83}Fe_{17}$)/Cu multilayers have been found to be strongly affected not only by the presence of the superparamagnetic/paramagnetic entitles located at the Py/Cu interfaces but mainly by the existence of the magnetic bridges between Py layers. The effectiveness of the magnetic bridges has been found to be temperature dependent, leading to the temperature dependence of the remnant to saturation magnetization ratio ($M_R/M_S$). We have found that for Py/Cu multilayers with equal Py and Cu layer thicknesses a high field sensitivity of the GMR effect (0.4%/Oe) and negligible hysteresis can be achieved when the number of Py layers decreases from 100 to 6. Sensitivity can be further improved by increasing the Py layers thickness, but the hysterstic effect becomes more pronounced then.

  • PDF

Initial Magnetization and Coercivity Mechanism in Amorphous TbxCo1-x Thin Films with Perpendicular Anisotropy

  • Kim, Tae-Wan;Lee, Ha-Na;Lee, Hyun-Yong;Lee, Kyoung-Il
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.169-172
    • /
    • 2010
  • The coercivity mechanism in permanent magnets was analyzed according to the effects of domain nucleation and domain wall pinning. The coercivity mechanism of a TbCo thin film with high perpendicular magnetic anisotropy was considered in terms of the local inhomogeneity in the thin film. The initial magnetization curves of the TbCo thin films demonstrated domain wall pinning to be the main contributor to the coercivity mechanism than domain nucleation. Based on the coercivity model proposed by Kronmuller et al., the inhomogeneity size acting as a domain wall pinning site was determined. Using the measured values of perpendicular anisotropy constant ($K_u$), saturation magnetization ($M_s$), and coercivity ($H_c$), the inhomogeneity size estimated in a TbCo thin film with high coercivity was approximately 9 nm.

Fabrication and Magnetic Process of 13Cr-1.5Nb-Fe Stainless Sensors (13Cr-1.5Nb-Fe 스텐레스 센서재료의 제조 및 연자기특성)

  • 윤성호;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 1998
  • 13Cr-1.5Nb-Fe alloy powder was fabricated by water atomization method, and ring-shape specimen of this composition was fabricated by oil press, and then sintered in the vacuum furnace. Powder shape, size distribution, composition (C, N, O, S) analysis and saturation magnetization of as-prepared 13Cr-1.5Nb-Fe alloy powder were investigated. Ac permeability and power loss was measured after forming and sintering process. Saturation magnetization and contents of oxygen of the alloy powder is160 emu/g and about 6000 ppm, respectively. 50 % volume fraction indicate particle size of 70$\mu$m. The ac permeability of sintered specimen increases with increasing sintering temperature and forming pressure. The power loss is 107 W/cc at sintering temperature of 1200 $^{\circ}C$, 12 ton/$\textrm{cm}^2$ forming pressure, and 20 KHz. It is the lowest among the prepared specimen.

  • PDF

Excellent Magnetic Properties of Co53FE22Hf10O15 Thin Films

  • Tho, L.V.;Lee, K.E.;Kim, C.G.;Kim, C.G.;Cho, W.S.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.167-169
    • /
    • 2006
  • Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. It is shown that the CoFeHfO thin films possess not only high electrical resistivity but also large saturation magnetization and anisotropy field. Among the composition investigated, $Co_{53}FE_{22}Hf_{10}O_{15}$ thin film is observed to exhibit good soft magnetic properties: coercivity ($H_{c}$) of 0.18 Oe; anisotropy fild ($H_{k}$) of 49.92 Oe; saturation magnetization ($4{\Pi}M_{s}$) of 15.5 kG. The frequency response of permeability of the film is excellent. The excellent magnetic properties of this film in addition of an extremely high electrical resistivity (r) of $185\;{\mu}cm$ make it ideal for uses in high-frequency applications of micromagnetic devices. It is the formation of a peculiar microstructure that resulted in the superior properties of this film.

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.