• Title/Summary/Keyword: Saturation flow rate

Search Result 126, Processing Time 0.027 seconds

Assessing Signalized Intersection Performance by Individual Lane Level Using Current HCM Methods and Software (기존 HCM 분석방법과 분석 소프트웨어를 이용한 신호교차로의 차로별 분석방법 연구)

  • Lee, Jae-Joon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • Signalized intersection analysis using lane groups often generalizes distinct characteristics of individual lanes. An individual lane level analysis procedure is proposed. The method can assess individual lane LOS without additional data collection efforts. Analysis results of the proposed method were compared with the current HCM analysis results and outputs of aaSIDRA, which can calculate intersection performance lane-by-lane. The results showed individual lane analysis mostly produces similar results with HCM and aaSIDRA. However, lane analysis results for permitted left lanes showed some differences with aaSIRDRA due to the different method of assessing saturation flow rate of the permitted left turn movement. It is expected that the proposed method could complement the weaknesses of current HCM signalized intersection analysis.

Synthesis of Boron-doped Crystalline Si Nanoparticles Synthesized by Using Inductive Coupled Plasma and Double Tube Reactor (유도결합 플라즈마와 이중관 반응기를 이용하여 제조한 보론-도핑된 결정질 실리콘 나노입자의 합성)

  • Jung, Chun-Young;Koo, Jeong-Boon;Jang, Bo-Yun;Lee, Jin-Seok;Kim, Joon-Soo;Han, Moon-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.662-667
    • /
    • 2014
  • B-doped Si nanoparticles were synthesized by using inductive coupled plasma and specially designed double tube reactor, and their microstructures were investigated. 0~10 sccm of $B_2H_6$ gas was injected during the synthesis of Si nanoparticles from $SiH_4$ gas. Highly crystalline Si nanoparticles were synthesized, and their crystallinity did not change with increase of $B_2H_6$ flow rates. From SEM measurement, their particle sizes were approximately 30 nm regardless of $B_2H_6$ flow rates. From SIMS analysis, almost saturation of B in Si nanoparticles was detected only when 1 sccm of $B_2H_6$ was injected. When $B_2H_6$ flow rate exceeded 5 sccm, higher concentration of B than solubility limit was detected even if any secondary phase was not detected in XRD or HR-TEM results. Due to their high electronic conductivity, those heavily B-doped Si nanoparticles can be a potential candidate for an active material in Li-ion battery anode.

The heat transfer characteristics of a desorber for 150 RT absorption heat pump (150 RT급 흡수식 열펌프용 고온재생기의 열전달 특성)

  • 박찬우;정종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.369-376
    • /
    • 1999
  • Experiments were carried out to study the heat transfer characteristics of a disrober for 150 RT LiBr-water absorption heat pump. An experimental apparatus was divided into four sections, a combustion chamber area, two bare-tube areas, and finally a finned-tube area to quantify the heat transfer rate of each section by measuring the generation rate of vapor. Dividing plates was installed at the upper inside part of deserter to prohibit the moving of vapor generated at heating tubes of a section to another section near. In the first bare-tube area, the generation rate of vapor was the largest among the four sections. The finned-tube area only contributed to give sensible heat increase of solution to the saturation temperature. The heat transfer area of the finned-tube area was 52.2%, which absorbed only 9.2% of the total heat from the combustion gas. On the contrary, the heat transfer area of the first bare-tube area was 16.6%, but it absorbed 52.4% of the total absorbed heat. The temperature of the solution at upper part at the finned-tube area was lower than that of the lower part, because weak solution came in upper part of the finned-tube area. But, this tendency was changed at the first and second bare-tube area due to the vigorous heat transfer and fluid flow enhanced by vapor generation through heating tubes. The overall heat transfer coefficient and heat flux were the largest at the first bare-tube area among the other sections.

  • PDF

A Clinical Study of Bidirectional Cavopulmonary Shunt (양방향성 상대정맥-폐동맥 단락술의 임상적 연구)

  • 지현근
    • Journal of Chest Surgery
    • /
    • v.28 no.8
    • /
    • pp.759-765
    • /
    • 1995
  • We reviewed our experiences on 33 patients who underwent a bidirectional cavopulmonary shunt[BCPS from February 1992 to July 1994. There were 19 male an 14 female patients, and their weight ranged from 4.4 to 13.3 Kg[mean weight 8.4 $\pm$2.9 Kg . The age ranged from 2 to 55 months [mean age 16.7 $\pm$15.5 months . Their diagnosis included single ventricle group in 16, unbalanced ventricles in 8 whose associated anomalies were double outlet right ventricle, transposition of great arteries and total anomalous pulmonary venous return, tricuspid atresia in 7, hypoplastic left heart syndrome in 1 who underwent a Norwood procedure and double outlet right ventricle with pulmonic stenosis and tricuspid stenosis in 1 who underwent biventricular repair. Among them 10 patients had received other palliative operation before [Norwood procedure 1, pulmonary artery banding 3, modified Blalock-Taussig shunt 6 . The BCPS operations were performed under the cardiopulmonary bypass. 16 patients underwent unilateral BCPS and 17 patients who had bilateral SVC underwent bilateral BCPS. Three patients whose associated anomalies were interruption of IVC underwent total cavopulmonary shunt. There were 5 operative deaths [mortality rate 15.1 % and 2 late deaths. The risk factor for the operation was high mean pulmonary artery pressure [p value<0.05 . The survivors showed good postoperative course and their postoperative oxygen saturation was increased significantly compared to that of preoperative status[p value<0.05 .Conclusively, BCPS operation is effective and safe palliative procedure for the many cyanotic complex congenital anomalies with decreased pulmonary blood flow especialy for the patients who have the high risk factors for Fontan operations.

  • PDF

Adsorption Characteristics of Toluene in the Adsorption Bed Packed with Activated Carbon Fiber (활성탄소섬유 흡착bed에서의 톨루엔 흡착특성)

  • Kim, Sang-Guk;Chang, Ye-Rim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.220-228
    • /
    • 2008
  • Toluene adsorption characteristics in the adsorption bed packed with activated carbon fiber (ACF) were studied. Experimental apparatus is composed of VOC generation equipment, adsorption bed, and analytical instrument. Breakthrough characteristics were investigated with length of the adsorption bed which consisted of 3 or 5 sheets of the ACF and flow rate when toluene concentration are 400 ppm and 800 ppm respectively. When mass transfer zone (MTZ) comes out of the adsorption bed, toluene concentration is increased sharply and reached plateau region by saturation. Experimental results are compared with semi-empirical gas adsorption model proposed by Yoon and Nelson. In order to investigate the movement of the MTZ with adsorption time in the adsorption bed packed with ACFs, weight increment of each ACF was measured with the location of ACF at each run. When the weight increment of ACF by toluene adsorption which located at the exit of the bed reaches about 20%, toluene started to be detected.

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

Throughput Analysis of Right Turn Shared Lane with Lane Width Change (차로폭에 따른 우회전 공용차로의 통과교통량분석)

  • 김동녕;김경환
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.17-31
    • /
    • 2003
  • This study is about throughput analysis of the shared right turn lane at signalized intersection with lane width change. It is expected that the increased width of the right turn shared lane causes to increase the volume of right turn on red(RTOR) In this study, the throughput computation is designed to take into account the lost time which is caused by the blocked right turn due to the stop of through traffic. The saturation flow rate of right turn using the rest of lane after through traffic stops is included as well. Results show that the different RTOR volume levels due to the various shared lane width leads to a difference in throughput. For the shared right turn lanes. throughput capacity for various lane widths is bigger than that of the KHCM as much as from 1.1 to 2.1 times.

Systemic-Pulmonary Shunts for Cyanotic Congenital Heart Disease (선천성 청색증 심장병에서의 체-폐동맥 단락술)

  • Bang, Jong-Gyeong;Han, Seung-Se;Kim, Gyu-Tae
    • Journal of Chest Surgery
    • /
    • v.21 no.1
    • /
    • pp.136-142
    • /
    • 1988
  • Between February, 1983, and March, 1987, thirty-one systemic-pulmonary shunts were performed in 28 patients with cyanotic congenital heart disease. Age ranged from 8 months to 28 years [mean age, 5.4 years, Weight ranged from 7 kg to 48 kg [mean weight, 16kg]. There were 4 classic Blalock-Taussig shunts, 5 central polytetrafluoroethylene shunts, 1 aorta-right pulmonary artery shunt with graft, and 21 modified Blalock-Taussig shunts. One patient required another shunt immediately due to insufficient pulmonary blood flow with patent graft. There was no postoperative death. Conduit diameters included 4mm [2 cases], 5 mm [22 cases], and 6 mm [3 cases]. Long term follow up was available in 27 patients [96.4%] with mean period of 20 months [range, 4 months to 49 months]. The effectiveness of shunt was evaluated by cardiac catheterization with angiography [15 patients] or clinically. They showed improvement of systemic oxygen saturation values by 12% and decrease of hemoglobin by 2.3gm/dl [P<0.01]. There were 2 shunt occlusion in central shunts at 32 and 48 months respectively, and one narrowing of graft in modified Blalock-Taussig shunt at 12 months. The patency rate was 91.6% at 24 months for 5 mm grafts in modified Blalock-Taussig shunt.

  • PDF

A Characteristic Analysis of Ozone Generator Using the Al2O3 Ceramic Dielectric According to Gas Type(O2/Air) (Al2O3 유전체를 이용한 산소/공기 원료에 따른 오존발생기의 특성)

  • Park, Hyun-Mi;Song, Hyun-Jig;Park, Won-Joo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.76-81
    • /
    • 2014
  • The ozone generation is commonly made with silent discharge method using quartz glass dielectric. In this paper, using $Al_2O_3$ dielectric to instead of the traditional quartz glass dielectric to improve the system efficiency is presented. The dielectric was manufactured as tube shape (Internal diameter${\times}$ Outside diameter: $11{\times}15mm$) using 99% $Al_2O_3$ ceramic. The characteristics of dielectric discharge and ozone generation were studied of experiments with variation of discharge power, discharge electrode space and rate of flow for supplied gas ($O_2$/Air). As the experimental results, in the same discharge space, the ozone concentration continuously increased with input power increasing, and ozone yield increased until saturation happened. Also, the expended power increased with discharge space extended due to discharge power increased. In additional, the ozone concentration of oxygen ozone was higher than air that was observed when using oxygen ozone in proposed experiments.

Closed-Loop Cooling System for High Field Mangets (고자기장용 자석을 위한 밀폐순환형 냉각장치)

  • Choi, Y.S.;Kim, D.L.;Lee, B.S.;Yang, H.S.;Painter, T.A.;Miller, J.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • A closed-loop cryogenic cooling system for high field magnets is presented. This design is motivated by our recent development of cooling system for 21 tesla Fourier Transform ion Cyclotron Resonance (FT-ICR) superconducting magnets without any replenishment of cryogen. The low temperature superconducting magnets are immersed in a subcooled 1.8 K bath, which is connected hydraulically to the 4.2 K reservoir through a narrow channel. Saturated liquid helium is cooled by Joule-Thomson heat exchanger and flows through the JT valve, isenthalpically dropping its pressure to approximately 1 6 kPa, corresponding saturation temperature of 1.8 K. Helium gas exhausted from pump is now recondensed by two-stage cryocooler located after vapor purify system. The amount of cryogenic Heat loads and required mass flow rate through closed-loop are estimated by a relevant heat transfer analysis, from which dimensions of JT heat exchanger and He II heat exchanger are determined. The detailed design of cryocooler heat exchanger for helium recondensing is performed. The effect of cryogenic loads, especially superfluid heat leak through the gap of weight load relief valve, on the dimensions of cryogenic system is also investigated.