• Title/Summary/Keyword: Saturated soils

Search Result 260, Processing Time 0.028 seconds

A Comparison of Soil Hydraulic Conductivities Determined by Three Different Methods in a Sandy Loam Soil (토양(土壤)의 포화투수계수(飽和透水係数) 측정법(測定法) 비교(比較) 연구(硏究))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.14-19
    • /
    • 1983
  • Comparison and evaluation of various wellknown methods to determine the saturated hydraulic conductivity of soil were attempted in order to choose a convenient and reliable method applicable, at least, to Bonryang sandy loam (coarse loamy over sandy, mixed, mesic family of Typic Udifluvents). Three experimental methods, inversed auger hole, infiltrometer, and core sample method, were used for this purpose. The results were summarized as follows: 1. The inversed auger hole method was highly correlated with the infiltrometer method while the core sample method was poorly correlated with other two methods. 2. The inversed auger hole method was proved to be convenient and reliable method to measure the hydraulic conductivity of upland coarse textured soils in situ. 3. The hydraulic conductivity determined by the infiltrometer method converged to a constant value after 80 to 100 minutes from starting of measurement. 4. The conductivity determined by the inversed auger hole method approached to a constant value at 5 or 6th run of measurement. 5. The hydraulic conductivity determined by the core sample method was greatly under estimated in comparison with the values obtained by other two methods.

  • PDF

Use of Electromagnetic Inductance for Salinity Measurement in Reclaimed Saline Land (전자장 유도 장치를 이용한 간척지 토양의 염농도 측정)

  • Jung, Yeong-Sang;Lee, Won-Ho;Joo, Jin-Ho;Yu, Il-Ho;Shin, Wan-Sik;Ahn, Yeol;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.57-65
    • /
    • 2003
  • Mapping of salinity distribution in the reclaimed lands was attempted by using the electromagnetic inductance technique. Field study was conducted to monitor ground conductivity with an electromagnetic inductance, EM 38 (Geonics), and electrical conductivity of the saturated extract, ECe of the soils, at the Daeho reclaimed land. EM values of horizontal mode, EMh, and vertical mode, EMv, mode were recorded at the interval of $2m{\times}2m$ from the ground. Soil samples were taken through the profile down to 100cm for calibration. ECe of poor drained area of Daeho, were in the range of $19.50-91.50ds\;m^{-1}$, while ECe of well-drained area ranged from $1.10-34.40ds\;m^{-1}$. Multiple regression equations for the measured EMv, EMh, and ECe were highly significant. The EMh showed higher correlation with ECe than EMv. With the multiple equation, ECgM could be calculated. Correlation between ECe and ECgM was the highest ($r=0.753^{***}$), when EMI readings were taken on the ground. The relationships were highly significant below 30 cm height of measurement, With the EM38 measurement, the salinity distribution was effectively expressed for the experimental filed in Daeho reclaimed land.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Reliable Assessment of Rainfall-Induced Slope Instability (강우로 인한 사면의 불안정성에 대한 신뢰성 있는 평가)

  • Kim, Yun-Ki;Choi, Jung-Chan;Lee, Seung-Rae;Seong, Joo-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2009
  • Many slope failures are induced by rainfall infiltration. A lot of recent researches are therefore focused on rainfall-induced slope instability and the rainfall infiltration is recognized as the important triggering factor. The rainfall infiltrates into the soil slope and makes the matric suction lost in the slope and even the positive pore water pressure develops near the surface of the slope. They decrease the resisting shear strength. In Korea, a few public institutions suggested conservative slope design guidelines that assume a fully saturated soil condition. However, this assumption is irrelevant and sometimes soil properties are misused in the slope design method to fulfill the requirement. In this study, a more relevant slope stability evaluation method is suggested to take into account the real rainfall infiltration phenomenon. Unsaturated soil properties such as shear strength, soil-water characteristic curve and permeability for Korean weathered soils were obtained by laboratory tests and also estimated by artificial neural network models. For real-time assessment of slope instability, failure warning criteria of slope based on deterministic and probabilistic analyses were introduced to complement uncertainties of field measurement data. The slope stability evaluation technique can be combined with field measurement data of important factors, such as matric suction and water content, to develop an early warning system for probably unstable slopes due to the rainfall.

Leaching and Distribution of Cation in Multi-layered Reclaimed Soil Column with Intermediate Macroporous Layer (대공극층위 형성 간척지 다층토주의 양이온 용탈 및 분포)

  • Ryu, Jin-Hee;Chung, Doug-Young;Hwang, Seon-Woong;Kang, Jong-Guk;Lee, Sang-Bok;Choi, Weon-Young;Ha, Sang-Keun;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.602-609
    • /
    • 2010
  • To investigate desalinization patterns of surface reclaimed saline-sodic soil (RSSS) with subsurface layer of macroporous medium, multi-layered soil columns were constructed. For the multi-layered soil columns, gypsum was treated at the rate of 5 cmolc $kg^{-1}$ in surface (top) while coal bottom ash (CBA) was placed into intermediate layer below the gypsum-treated surface soils followed by the reclaimed saline-sodic soil as bottom layer (BL). The lengths of top soil was 30 cm long while the lengths of the CBA were 20 and 30 cm long. The saturated hydraulic conductivities (Ksat) were $0.39{\times}10^{-4}$ and $0.31{\times}10^{-4}cm\;sec^{-1}$ for RSSS(30 cm)-CBA(20 cm)-BL(20 cm) and RSSS(30 cm)-CBA(20 cm)-RSSS(20 cm), respectively while the lowest $K_{sat}$. was $0.064{\times}10^{-4}cm\;sec^{-1}$ for RSSS(30 cm)-CBA(20 cm)+BL(20 cm). The time required to reach the lowest EC in eluent, 0.3 dS $m^{-1}$ from 33.9 dS $m^{-1}$ was shorter in multi-layered soil columns with GR-CBA than that of RS-SRS, representing that rate of desalinization was greater than 99%. Exchangeable Na decreased by 94.8~96.2 %, while exchangeable Ca increased by 98~129 %.

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Physiological Response of Potato Variety to Soil Salinity (토양염농도에 따른 감자 품종들의 생장특성)

  • Kim, Sun;Yang, Chang-Hyu;Jeong, Jae-Hyeok;Choi, Weon-Young;Lee, Kyu-Seong;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This study was conducted to examine the basis for the information to select the suitable potato varieties grown in new reclaimed land. The potatoes of five varieties were planted in the port with 4 different electrical conductivities of saturated extracts of soil taken the Saemangeum reclamation area, which was made of non-treatment salt and three concentrations of salt treatment, 1.6 dS $m^{-1}$, 3.2 dS $m^{-1}$, 4.8 dS $m^{-1}$, respectively. All of the potato varieties were uniformly emerged without missing plant in all treatment groups, even 4.8 dS $m^{-1}$ treatment group. According to the salt concentration of soil, required date to the emergence of the potato comparing to non-treatment salt was delayed 3-4 days in 1.6 dS $m^{-1}$, 6-10 days in 3.2 dS $m^{-1}$, 7-13 days in 4.8 dS $m^{-1}$, respectively, and the number of its branch decreased by 14-58% comparing to non-treatment salt depending on varieties. Since the increase of the salt concentration of the soil was more serious the decrease of the number of its branch, but plant height tended to increase when branch number per plant was small, which was depending on more number of its branch than salt concentration. Fresh tuber yield of potato comparing to non-treatment salt were decrease 33.7% in 1.6 dS $m^{-1}$, 59.5% in 3.2 dS $m^{-1}$, 79.3% 7-13 days in 4.8 dS $m^{-1}$, respectively. The threshold EC starting the growth inhibition of fresh weight decreased was 1.2 dS $m^{-1}$ for Chudong, 1.8 $m^{-1}$ for Chubeak, 1.9 $m^{-1}$ for Chugang and Chuyeong, and 2.0 $m^{-1}$ for Sumi, and EC which decreased 50% of dry weight index was 2.4 dS $m^{-1}$ for Chubaek, 2.45 dS $m^{-1}$ for Chudong, 2.81 dS $m^{-1}$ for Chugang, 3.03 dS $m^{-1}$ for Chuyeong, and 3.29 dS $m^{-1}$ for Sumi. The present results suggest that Sumi is considered to the suitable potato variety grown on saline soils.

Assessment of Salt Damage for Upland-Crops in Dae-Ho Reclaimed Soil (대호 간척지 토양의 염농도별 밭작물의 염해 평가)

  • Lee, Seung-Heon;Yoo, Sun-Ho;Seol, Su-Il;An, Yeoul;Jung, Yeong-Sang;Lee, Sang-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.358-363
    • /
    • 2000
  • This study was carried out to obtain the basic data for selecting the applicable crops in reclaimed land during desalinization period. A pot experiment was conducted with 5 different electrical conductivities of the saturated extracts $(ECe\;1,\;3,\;9,\;14,\;and\;16\;dS{\cdot}m^{-1})$ of soils taken from the Dae-Ho reclaimed tidal lands. Eight crops (Chinese cabbage, radish, tomato, red pepper, buckwheat, soybean, sesame, and green perilla) were grown for 37days. Plant height and number of leaves were surveyed on 2 and 4 weeks after seeding, and on harvest time (5 weeks). After harvest, dry weights of harvested crops were measured and soil chemical properties were analyzed. Emergence rates of crops were comparatively high except sesame. For sesame, there was no emergence at ECe over $3\;dS{\cdot}m^{-1}$. Growth and dry weight decreased significantly as increasing ECe. The ECe which decreased 50% of dry weight index were $14.2\;dS{\cdot}m^{-1}$ for radish, $11.4\;dS{\cdot}m^{-1}$ for Chinese cabbage, $10.2\;dS{\cdot}m^{-1}$ for red pepper, $8.9\;dS{\cdot}m^{-1}$ for buckwheat and green perilla, $8.6\;dS{\cdot}m^{-1}$ for soybean, and $8.9\;dS{\cdot}m^{-1}$ for tomato. At higher ECe that start the growth inhibition, increasing $1\;dS{\cdot}m^{-1}$ in ECe, 7.7, 6.5, 5.9, 5.6, 5.2, and 4.9% of dry weight decreased for buckwheat, green perilla, Chinese cabbage, radish, soybean, and tomato (red pepper), respectively. The critical value of ECe for crop survival except sesame was $15.4\;{\sim}\;23.1\;dS{\cdot}m^{-1}$.

  • PDF

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition (정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.5-15
    • /
    • 2013
  • In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.