• Title/Summary/Keyword: Saturated Hydraulic Conductivity

Search Result 130, Processing Time 0.024 seconds

Effects of Forest Environmental Changes on Soil Characteristics by Forest Fire (산화에 의한 산림환경변화가 토양의 특성에 미치는 영향)

  • Nam, Yi;Min, Ell-Sik;Chang, Kwan-Soon;Park, Kwan-Soo;Lee, Yoon-Won
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 1998
  • This research has been made for influence of forest environmental changes, such as tree-clearcutting affecting to soil chemical and physical properties, on water storage capacity at forest fire land in Keumsan, Chungnam. The analyzed factors were bulk density, porosity, field moisture saturated hydraulic conductivity air permeability and organic matter content, Field moisture saturated hydraulic conductivity and air permeability at uncutting sites were higher than those at clearcutting sites, especially the most differences were appeared at lower slope. After 2 years passed since forest fire, the most changeable parts of soil characteristics were 5-l5cm depth below soil surface. Total Porosity, coarse pore and fine pore at uncutting sites were higher than those at clearcutting sites. Also, as soil depth increased, total porosity and coarse pore were decreased. Bulk density at uncutting sites was lower than that at clearcutting sites, and was decreased as soil depth increased. The order of the change trend in field moisture saturated hydraulic conductivity, air permeability and porosity was slope lower>middle>upper. Organic matter content at uncutting sites were higher than those at clearcutting sites, and decreased as soil depth increased. As soil depth increased, bulk density had the positive correlation, in other hand, porosity, coarse pore, field moisture saturated hydraulic conductivity, air permeability and organic matter content had the negative correlation. It was concluded that forest environmental changes by forest fire degrade soil physical and chemical properties.

  • PDF

Characterizing Hydraulic Properties by Grain-Size Analysis of Fluvial Deposits Depending on Stream Path in Korea

  • Oh, Yun-Yeong;Hamm, Se-Yeong;Chung, Sang Yong;Lee, Byeong Dae
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • The infiltration of rainwater into the surface soil is highly dependent on hydraulic variables, such as the infiltration rate, capillary fringe, moisture content, and unsaturated/saturated hydraulic conductivity. This study estimates the hydraulic conductivity (K) of fluvial deposits at three sites on the right and left banks of Nakdong River in Gyeongbuk Province, South Korea, including the Gumi, Waegwan, and Seongju bridge sites. The K values of 80 samples from 13 boreholes were estimated by using six grain-size methods (Hazen, Slichter, Kozeny, Beyer, Sauerbrei, and Pavchich formulae). The Beyer, Hazen, and Slichter methods showed a better relationship with K values along with an effective grain size than did the other three methods. The grain-size, pumping test, and slug test analyses resulted in different K values, but with similar K values in the grain-size analysis and pumping test. The lower K values of the slug test represent the uppermost fine sand layer.

The Method for Evaluating Unsaturated Hydraulic Conductivity of the Bentonite-buffer Using Relative Humidity (상대습도를 이용한 벤토나이트 완충재의 불포화 수리전도도 평가방안)

  • Lee, Hang-Bok;Kim, Jin-Seop;Choi, Young-Chul;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • Unsaturated hydraulic conductivity of the bentonite-buffer was evaluated using the relative humidity data. The method for calculating unsaturated hydraulic conductivity was deduced from the general analytical equation representing the movement of water in unsaturated media, which was applied to the experimental results of water infiltration tests for identifying the behavior of unsaturated hydraulic conductivity according to the water saturation. Unlike the saturated condition, the hydraulic gradient and water flux were irregularly changed, and the unsaturated hydraulic conductivity was increased with increasing the experimental time. Swelling of bentonite grains due to the water absorption increased the volume and size of pore within bentonite, resulting in the increase of water velocity and unsaturated hydraulic conductivity. This result suggested the necessity of further investigation on the correlation between the swelling degree of bentonite-buffer and unsaturated hydraulic conductivity. The method used in this study can be useful technique for evaluating long-term hydraulic performance of bentonite-buffer in the radioactive waste disposal system.

Estimation of Hydraulic Properties in Porous Media (다공성 매질의 수리특성 추정)

  • Park, Jae-Hyeon;Park, Chang-Kun;Soun, Jung-Ho
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.107-113
    • /
    • 1994
  • The analysis of Richards eq. requires data of the soil water retention function and the unsaturated hydraulic conductivity. The soil water retention function was measured through the use of the developed apparatus and the saturated hydraulic conductivity was measured by the constant head method for each soil sample corresponding to the A, B, C types of SCS. In order to obtain one water retention function and one unsaturated hydraulic conductivity which represent each soil group, van Genuchten's eq. and Mualem's pore-structure model was chosen respectively. Parameters of van Genuchten's eq. are estimated for each soil group using data obtained in the experiments, and estimated values give a basis to analyze the unsaturated flow in the non-measured region efficiently.

  • PDF

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants (토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향)

  • 이소정;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF

Hydraulic Characteristics of Arable Fields in Korea and Applicability of Pedotransfer Functions

  • Jung, Kangho;Sonn, Yeonkyu;Hur, Seungoh;Han, Kyunghwa;Cho, Heerae;Seo, Mijin;Jung, Munho;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.655-661
    • /
    • 2016
  • Relationships between saturated conductivity (Ks) and separate contents were evaluated from 44 soil series of arable lands: 18 for paddy fields and 26 for upland crop fields. Saturated hydraulic conductivities of A, B, and C horizons were determined with tension infiltrometer and Guelph permeameter in situ. Sand, silt, clay, and organic matter content of each horizon were analyzed. Based on correlation analysis, sand separate had a positive relationship with Ks for both paddy (r=0.27, p=0.017) and upland fields (r=0.24. p=0.030). Clay content had a negative relationship with Ks for paddy soils (r=-0.32, p=0.005) while significant correlation between them was not found for upland crop fields (r=-0.20, p=0.07). Organic matter content showed a positive relationship with Ks only for upland crop fields (r=0.33, p=0.002). Due to low correlation coefficients between separate contents and Ks, performance of pedotransfer functions was not enough to estimate Ks. It implies that hydraulic properties of arable lands were affected by other factors rather than particle characteristics. Platy structure and plow pan were suggested to limit Ks of paddy fields. Soil compaction and diversity of parent materials were proposed to influence Ks of upland crop fields. It suggests that genetic processes and artificial managements should be included in pedotransfer functions to estimate hydraulic properties appropriately.

Planting foundations and Turfgrass Species Adapted to Grounds (스포츠 그라운드에 적합한 식재지반과 잔디 초종에 관한 연구)

  • 심상렬;정대영;김경남
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • The purpose of this study is to identify the proper species of turf and the ground structure for the turf sports grounds. Analysis items are particle distribution of sand and gravel, saturated hydraulic conductivity, soil hardness, and turf growth. Results of this study are as follows. 1)The particle distribution of sand used in the multi-layer rootzone is within the upper limit of the standard level. The diameter of mid-size grain({TEX}$D_{50}${/TEX})was 0.62mm and the value of uniformity ({TEX}$D_{90}${/TEX}/{TEX}$D_{10}${/TEX}) was 3.93. The particle size distribution of sand used in the single-layer rootzone was beyond the standard level as {TEX}$D_{50}${/TEX})=0.86 and {TEX}$D_{90}${/TEX}/{TEX}$D_{10}${/TEX}=8.86. 2) Saturated hydraulic conductivity of the sand was higher in the multi-layer rootzone than in the single-layer rootzone while bulk density was vice versa. 3) Surface hardness was high on Kentucky bluegrass+perennial ryegrass compared to zoysiagrass probably caused by root density. 4) Visual covering and visual rating were highly evaluated on zoysiagrass within summer while better evaluated on Kentucky bluegrass+perennial ryegrass throughout fall to spring. 5) Visual color was better evaluated on Kentucky bluegrass+perennial ryegrass than on zoysiagrass throughout the year. These studies are demanded urgently according to increase in interest in the ground and turf species of the turf sports ground because of World Cup 2002.

  • PDF

Changes in Physical Properties of Dredged Soils by Drying (건조에 의한 준설 매립 지반에 물리적 특성변화)

  • Yonn Yong-Han;Kim Won-Tae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.36-43
    • /
    • 2006
  • This study was carried out to determine the ways in which drying improves and develops dredged soils which exist widely in the lowlands of Korea. Before drying there were large variations in the fundamental physico-chemical properties of dredged soils collected from different places. In the sample soils, saturated hydraulic conductivity decreased gradually with an increase in bulk density with the exception that in air-dried soils a reverse trend was observed. Also in the sample soils, the sedimentation volume and the consistency limits decreased gradually with the decrease in soil water content after the air-drying treatment. The porosity of the sample soils decreased from $0.67{\sim}0.87m^3/m^3\;to\;0.58{\sim}0.66m^3/m^3$ and the liquid-phase range decreased from $0.41{\sim}0.83m^3/m^3\;to\;0.29{\sim}0.71m^3/m^3$. The solid-phase range of sample soils increased $0.13{\sim}0.33m^3/m^3\;to\;0.24{\sim}0.37m^3/m^3$ same as above with air-drying treatment. In conclusion the air-drying treatment caused an irreversible effect on some physical properties. Accordingly, these facts indicate that the effects of air-drying treatment on these properties are considered to be resulted from irreversible changes in the structural status of the sample soils.