• Title/Summary/Keyword: Satellites data

Search Result 668, Processing Time 0.025 seconds

Performance Analysis of the First Korean Satellite Laser Ranging System

  • Choi, Man-Soo;Lim, Hyung-Chul;Choi, Eun-Jung;Park, Eunseo;Yu, Sung-Yeol;Bang, Seong-Cheol;Kim, Tae-Keun;Kim, Young-Rok;Kim, Dong-Jin;Seong, Kipyung;Ka, Neung-Hyun;Choi, Cer-Hee;Hwang, Joo-Yeon;Kucharski, Daniel;Han, In-Woo;Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Lee, Sang-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.225-233
    • /
    • 2014
  • The first Korean satellite laser ranging (SLR) system, Daedeok SLR station (DAEK station) was developed by Korea Astronomy and Space Science Institute (KASI) in 2012, whose main objectives are space geodesy researches. In consequence, Korea became the $25^{th}$ country that operates SLR system supplementing the international laser tracking network. The DAEK station is designed to be capable of 2 kHz laser ranging with precision of a few mm both in daytime and nighttime observation of satellites with laser retro-reflector array (LRA) up to the altitude of 25,000 km. In this study, characteristics and specifications of DAEK station are investigated and its data quality is evaluated and compared with International Laser Ranging Service (ILRS) stations in terms of single-shot ranging precision. The analysis results demonstrated that the DAEK station shows good ranging performance to a few mm precision. Currently, the DAEK station is under normal operations at KASI headquarters, however, it will be moved to Sejong city in 2014 to function as a fundamental station for space geodesy researches in combination with other space geodesy systems (GNSS, VLBI, DORIS, etc.).

Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model - A case study of the 17 Sep, 2013 eruption in SAKURAJIMA volcano - (GOCI 위성영상과 HYSPLIT 모델을 이용한 화산재 확산경로 예측 - 2013년 9월 17일 분화된 사쿠라지마 화산을 중심으로 -)

  • Lee, Seul-Ki;Ryu, Geun-Hyeok;Hwang, Eui-Hong;Choi, Jong-Kuk;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.303-314
    • /
    • 2014
  • Mt. SAKRAJIMA in southern Kagosima, japan is one of the most active volcanoes in the world. On 18 August 2013, the SAKRAJIMA volcano recently went into the largest scaled eruption with a huge plume of volcanic ash. Therefore, the concern arises if this considerable amount of ashes might flow into the Korea peninsula as well as Japan. In this paper, we performed numeric experiment to analyze how volcanic product resulted from the SAKRAJIMA volcano has impacted on Korea. In order to predict the spread pathway of ash, HYSPLIT model and UM data has been used and 17th September 2013 has been selected as observation date since it is expected that the volcanic ash would flow into the South Korea. In addition, we have detected ash dispersion by using optical Communication, Ocean and Meteorological Satellite- Geostationary Ocean Color Imager (COMS-GOCI) images. As the results, we come to a very satisfactory conclusion that the spread pathway of volcanoes based on HYSPLIT model are matched 63.52 % with ash dispersion area detected from GOCI satellites image.

WRF Numerical Study on the Convergent Cloud Band and Its Neighbouring Convective Clouds (겨울철 동해상의 대상수렴운과 그 주위의 대류운에 관한 WRF 수치모의 연구)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.49-68
    • /
    • 2014
  • This study analyzed atmospheric conditions for the convergent cloud band (Cu-Cb line) in developing stage and its neighbouring convections formed over the East Sea on 1 February 2012, by using synoptic, satellites data, and WRF numerical simulation output of high resolution. In both satellite images and the WRF numerical simulation outputs, the Cu-Cb line that stretched out toward northwest-southeast was shown in the East Sea, and cloud lines of the L mode were aligned in accordance with the prevailing surface wind direction. However, those of the T mode were aligned in the direction of NE-SW, which was nearly perpendicular direction to the surface winds. The directions of the wind shear vectors connecting top winds and bottom winds of the moist layers of the L mode and the T mode were identical with those of the cloud lines of L mode and T mode, respectively. From the WRF simulation convection circulations with a convergence in the lower layer of atmosphere and a divergence above 1.5 km ASL (Above Sea Level) were identified in the Cu-Cb line. A series of small sized vortexes (maximum vortex: $320{\times}10^{-5}s^{-1}$) of meso-${\gamma}$-scale formed by convergences was found along the Cu-Cb lines, suggesting that Cu-Cb lines, consisting of numerous convective clouds, were closely associated with a series of the small vortexes. There was an absolute unstable layer (${\partial}{\theta}/{\partial}z$ < 0) between sfc and ~0.3 km ASL, and a stable layer (${\partial}{\theta}/{\partial}z$ > 0) above ~2 km ASL over the Cu-Cb line and cloud zones. Not only convectively unstable layers (${\partial}{\theta}_e/{\partial}z$ < 0) but also neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) in the lower atmosphere (sfc~1.5 km ASL) were scattered around over the cloud zones. Particularly, for the Cu-Cb line there were convectively unstable layers in the surface layer, and neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) between 0.2 and ~1.5 km ASL over near the center of the Cu-Cb line, and the neutralization of unstable layers came from the release of convective instability.

A Technique on the 3-D Terrain Analysis Modeling for Optimum Site Selection and development of Stereo Tourism in the Future (미래입체관광의 최적지선정 및 개발을 위한 3차원지형분석모델링 기법)

  • Yeon, Sang-Ho;Choi, Seung-Kuk
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.415-422
    • /
    • 2013
  • The contents development for the Internet and cyber tour has been attempted in a number of areas. 3D topography of the spatial environment, land planning and land information contents as a 3D tour of the future ubiquitous city safe for tourism due to the implementation of information made available major area. Domestic service, and in urban areas of the country where land and precise spatial information in order to shoot satellites and aircraft in the area you want to mount the camera on a variety of photo images taken by conducting 3D spatial that is required is able to obtain the information. Geo spatial information in a variety of direct or indirect acquisition of the initial spatial data into a database for accurate collection, storage, editing, manipulation and application technology changes in the future by establishing a database of 3D spatial by securing content organization ubiquitous tourist to take advantage of new tourism industry was greatly. As a result of this study for future tourism using geo spatial information and analysis of 3D modeling by intelligent land information indirectly, with quite a few stereo site experience and a variety of tourist spatial acquisition and utilization of information could prove.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.

Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient (KOMPSAT-5 후방산란계수의 보정식 산출 및 적용을 통한 해상풍 산출 결과 개선)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1373-1389
    • /
    • 2019
  • KOMPSAT-5 is the first satellite in Korea equipped with X-band Synthetic Aperture Radar (SAR) instrument and has been operated since August 2013. KOMPSAT-5 is used to monitor the global environment according to its observation purpose and the availability of KOMPSAT-5 is also highlighted as the need of high resolution wind data for investigating the coastal region. However, the previous study for the validation of wind derived from KOMPSAT-5 showed that the accuracy is lower than that of other SAR satellites. Therefore, in this study, we developed the correction equation of normalized radar cross section (NRCS or backscattering coefficient) for improvement of wind from the KOMPSAT-5 and validated the effect of the equation using the in-situ measurement of ocean buoys. Theoretical estimated NRCS and observed NRCS from KOMPSAT-5 showed linear relationship with incidence angle. Before applying the correction equation, the accuracy of the estimated wind speed showed the relatively high root-mean-square errors (RMSE) of 2.89 m s-1 and bias of -0.55 m s-1. Such high errors were significantly reduced to the RMSE of 1.60 m s-1 and bias of -0.38 m s-1 after applying the correction equation. The improvement effect of the correction equation showed dependency relying on the range of incidence angle.

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF

Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Park, Eunseo;Oh, Hyungjik Jay;Park, Sang-Young;Lim, Hyung-Chul;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.269-277
    • /
    • 2013
  • In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion $X_P$ and $Y_P$ are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration (해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구)

  • Kim, Jung-Gun;Sohn, Byung-Ju;Chung, Eui-Seok;Chun, Hyoung-Wook;Suh, Ae-Sook;Kim, Kum-Lan;Oh, Mi-Lim
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.535-549
    • /
    • 2008
  • Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

Temporal and Spatial Variation of the Mesoscale Cold Core Eddy in the East China Sea Using Satellite Remote Sensing (원격탐사에 의한 동중국해 중규모 와동류의 시공간적 변동 연구)

  • Suh Young-Sang;Jang Lee-Hyun;Lee Na-Kyung;Ahn Yu-Hwan;Yoon Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2004
  • The mechanism of cold core eddy formation was investigated using boundary conditions between the East China coastal cold water and the Kuroshio Warm Current, wind data related to the monsoon which was measured by QuikSCAT, and the bottom topography of the East China Sea. When winds blow from the southeast at an intensity comparable to that in the winter period in 1999 and 2003, the warm Kuroshio and Tsushima Current became stronger, and temperatures were considerably higher than those of the extended cold water of the coast of the East China. At that time, the cold water was captured by warm water from the Kuroshio and the Tsushima Current. This facilitated the formation of mesoscale cold core eddies with diameter of 150km in the East China Sea in May, 1999 and February, 2003. The cold core eddy which was detected by NOAA, SeaWiFS and QuikSCAT satellites. The East China Sea is considered to be important not only as a good fishing ground but also nursery and spawning area for many kinds of fishes. Therefore, it would be worth studying spatio-temporal variations of the cold core eddy in the environmental conditions of the northwestern East China Sea using systematic remote sensing techniques.