• Title/Summary/Keyword: Satellites data

Search Result 668, Processing Time 0.021 seconds

Estimating Photosynthetically Available Radiation from Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해양관측위성 (GOCI) 자료를 이용한 광합성 유효광량 추정)

  • Kim, Jihye;Yang, Hyun;Choi, Jong-Kuk;Moon, Jeong-Eon;Frouin, Robert
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Here, we estimated daily Photosynthetically Available Radiation (PAR) from Geostationary Ocean Colour Imager (GOCI) and compared it with daily PAR derived from polar-orbiting MODIS images. GOCI-based PAR was also validated with in-situ measurements from ocean research station, Socheongcho. GOCI PAR showed similar patterns with in-situ measurements for both the clear-sky and cloudy day, whereas MODIS PAR showed irregular patterns at cloudy conditions in some areas where PAR could not be derived due to the clouds of sunglint. GOCI PAR had shown a constant difference with the in-situ measurements, which was corrected using the in-situ measurements obtained on the days of clear-sky conditions at Socheongcho station. After the corrections, GOCI PAR showed a good agreement excepting on the days with so thick cloud that the sensor was optically saturated. This study revealed that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently, eight times a day at an hourly interval in daytime, than other polar orbit ocean colour satellites, which can reduce the uncertainties induced by the existence and movement of the cloud and insufficient images to map the daily PAR at the seas around Korean peninsula.

Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data (Sentinel-1 SAR 데이터를 이용한 우리나라 농지의 토양수분 산출 실험)

  • Lee, Soo-Jin;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.947-960
    • /
    • 2017
  • Soil moisture plays an important role to affect the Earth's radiative energy balance and water cycle. In general, satellite observations are useful for estimating the soil moisture content. Passive microwave satellites have an advantage of direct sensitivity on surface soil moisture. However, their coarse spatial resolutions (10-36 km) are not suitable for regional-scale hydrological applications. Meanwhile, in-situ ground observations of point-based soil moisture content have the disadvantage of spatially discontinuous information. This paper presents an experimental soil moisture retrieval using Sentinel-1 SAR (Synthetic Aperture Radar) with 10m spatial resolution for cropland in South Korea. We developed a soil moisture retrieval algorithm based on the technique of linear regression and SVR (support vector regression) using the ground observations at five in-situ sites and Sentinel-1 SAR data from April to October in 2015-2017 period. Our results showed the polarization dependency on the different soil sensitivities at backscattered signals, but no polarization dependence on the accuracies. No particular seasonal characteristics of the soil moisture retrieval imply that soil moisture is generally more affected by hydro-meteorology and land surface characteristics than by phenological factors. At the narrower range of incidence angles, the relationship between the backscattered signal and soil moisture content was more distinct because the decreasing surface interference increased the retrieval accuracies under the condition of evenly distributed soil moisture (during the raining period or on the paddy field). We had an overall error estimate of RMSE (root mean square error) of approximately 6.5%. Our soil moisture retrieval algorithm will be improved if the effects of surface roughness, geomorphology, and soil properties would be considered in the future works.

Application of KOMPSAT-5 SAR Interferometry by using SNAP Software (SNAP 소프트웨어를 이용한 KOMPSAT-5 SAR 간섭기법 구현)

  • Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2017
  • SeNtinel's Application Platform (SNAP) is an open source software developed by the European Space Agency and consists of several toolboxes that process data from Sentinel satellite series, including SAR (Synthetic Aperture Radar) and optical satellites. Among them, S1TBX (Sentinel-1 ToolBoX)is mainly used to process Sentinel-1A/BSAR images and interferometric techniques. It provides flowchart processing method such as Graph Builder, and has convenient functions including automatic downloading of DEM (Digital Elevation Model) and image mosaicking. Therefore, if computer memory is sufficient, InSAR (Interferometric SAR) and DInSAR (Differential InSAR) perform smoothly and are widely used recently in the world through rapid upgrades. S1TBX also includes existing SAR data processing functions, and since version 5, the processing capability of KOMPSAT-5 has been added. This paper shows an example of processing the interference technique of KOMPSAT-5 SAR image using S1TBX of SNAP. In the open mine of Tavan Tolgoi in Mongolia, the difference between DEM obtained in KOMPSAT-5 in 2015 and SRTM 1sec DEM obtained in 2000 was analyzed. It was found that the maximum depth of 130 meters was excavated and the height of the accumulated ore is over 70 meters during 15 years. Tidal and topographic InSAR signals were observed in the glacier area near Jangbogo Antarctic Research Station, but SNAP was not able to treat it due to orbit error and DEM error. In addition, several DInSAR images were made in the Iraqi desert region, but many lines appearing in systematic errors were found on coherence images. Stacking for StaMPS application was not possible due to orbit error or program bug. It is expected that SNAP can resolve the problem owing to a surge in users and a very fast upgrade of the software.

Conjugation of Landsat Data for Analysis of the Land Surface Properties in Capital Area (수도권 지표특성 분석을 위한 Landsat 자료의 활용)

  • Jee, Joon-Bum;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.54-68
    • /
    • 2014
  • In order to analyze the land surface properties in Seoul and its surrounding metropolitan area, several indices and land surface temperature were calculated by the Landsat satellites (e.g., Landsat 5, Landsat 7, and Landsat 8). The Landsat data came from only in the fall season with Landsat 5 on October 21, 1985, Landsat 7 on September 29, 2003, and Landsat 8 on September 16, 2013. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the land surface temperature of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new city (e.g., Ilsan) around Seoul. According to NDVI, NDBI and land surface temperature, urban expansion is displayed in the surrounding area of Seoul. The land surface temperature and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the land surface temperature and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. The NDVI and NDBI index is closely associated with the characteristics of the metropolitan area. Landsat 8 and Landsat 5 have very strong correlations (more than -0.6) but Landsat 7 has a weak one (lower than -0.5).

Grounding Line of Campbell Glacier in Ross Sea Derived from High-Resolution Digital Elevation Model (고해상도 DEM을 활용한 로스해 Campbell 빙하의 지반접지선 추정)

  • Kim, Seung Hee;Kim, Duk-jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.545-552
    • /
    • 2018
  • Grounding line is used as evidence of the mass balance showing the vulnerability of Antarctic glaciers and ice shelves. In this research, we utilized a high resolution digital elevation model of glacier surface derived by recently launched satellites to estimate the position of grounding line of Campbell Glacier in East Antarctica. TanDEM-X and TerraSAR-X data in single-pass interferometry mode were acquired on June 21, 2013 and September 10, 2016 and CryoSat-2 radar altimeter data were acquired within 15 days from the acquisition date of TanDEM-X. The datasets were combined to generate a high resolution digital elevation model which was used to estimate the grounding line position. During the 3 years of observation, there weren't any significant changes in grounding line position. Since the average density of ice used in estimating grounding line is not accurately known, the variations of the grounding line was analyzed with respect to the density of ice. There was a spatial difference from the grounding line estimated by DDInSAR whereas the estimated grounding line using the characteristics of the surface of the optical satellite images agreed well when the ice column density was about $880kg/m^3$. Although the reliability of the results depends on the vertical accuracy of the bathymetry in this study, the hydrostatic ice thickness has greater influence on the grounding line estimation.

The Development of Post-Processing GPS(L1)/Galileo(E1/E5a) Software Receiving Platform using MATLAB (GPS(L1)/Galileo(E1/E5a) 다중 신호 통합 수신 소프트웨어 플랫폼 개발)

  • Jeon, Sang-Hoon;So, Hyoung-Min;Lee, Taek-Jin;Kim, Ghang-Ho;Jeon, Seung-Il;Kim, Jong-Won;Kee, Chang-Don;Cho, Young-Su;Choi, Wan-Sik;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.311-318
    • /
    • 2009
  • This paper shows the research about the development of software receiving platform processing GPS/Galileo L1/E1/E5a signal. Various researches for new GNSS signal character are possible using software receiving platform by facile program code modification. In addition, the program that processes GPS and Galileo signal integration is expected to help developing integration of receiver algorithm that deal with new various GNSS signal. In this paper, it is introduced the structure of GPS/Galileo receiving platform using sampled IF data as a program input. The function of the software platform embodied using MATLAB tool is tested by live data from Galileo test satellites. The software platform is modulated according to their roll and function. Each module is able to use selective function on GNSS signal.

  • PDF

Development of unified communication for marine VoIP service (해상 VoIP 서비스를 위한 통합 커뮤니케이션 기술 개발)

  • Kang, Nam-seon;Yim, Geun-wan;Lee, Seong-haeng;Kim, Sang-yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.744-753
    • /
    • 2015
  • This paper presents the results of research on developing marine unified communications to provide VoIP service based on marine satellites. With the recent popularity of smart-phones and other mobile devices, the demand for Internet-based wired and wireless unified technology has been growing in marine environments, and increasing interest is being directed to VoIP products and service models with high price competitiveness and the ability to deliver a variety of services. In this regard, this research designed three instruments, developed their unit modules, and verified their performances. These three instruments included the following: (1) a marine VoIP module equipped with an analogue gateway that can be linked to the existing devices used in vessels, which is more than 80% smaller than that of a land system; (2) a text/voice/video engine for marine satellite communications that runs on technology that minimizes communication data usage, which is a core technology for a marine VoIP service; and (3) a unified communication service that can support multilateral cloud-based message conversations, telephone number-based call functions, and voice/video calling between a private space in a ship and shore.

Technology Trends and Future Prospects of Satellite-Based Photovoltaic Electricity Potential (위성기반 태양광 발전가능량 산출기술 개발 동향 및 향후 전망)

  • Han, Kyung-Soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.579-587
    • /
    • 2016
  • To obtain a stable energy supply and manage PhotoVoltaic (PV) systems efficiently, satellite imagery methods are being developed to estimate the solar PV potential. This study analyzed trends in the use of satellite imagery in solar PV and solar irradiation estimation technology. The imaging technology is used to produce solar energy resource maps. The trend analysis showed that the level of solar PV technology in Korea is 30% below that of advanced countries. It is impossible to raise such low-level technologies to the levels of advanced countries quickly. Intensive research and development is the only way to achieve the 80% technology level of advanced countries. The information produced in this process can contribute to the management of solar power plants. A valid technology development strategy would be to obtain effective data that can be used for fieldwork. Such data can be produced by estimating solar irradiation very accurately with several-hundred-meter resolution using Communication, Ocean, and Meteorological Satellites (COMS) and next-generation GEO-KOMPSAT 2A, developing core technologies for short- and medium-term irradiation prediction, and developing technologies for estimating the solar PV potential.

National Disaster Scientific Investigation and Disaster Monitoring using Remote Sensing and Geo-information (원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링)

  • Kim, Seongsam;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.763-772
    • /
    • 2019
  • High-resolution satellites capable of observing the Earth periodically enhance applicability of remote sensing in the field of national disaster management from national disaster pre-monitoring to rapid recovery planning. The National Disaster Management Research Institute (NDMI) has been developed various satellite-based disaster management technologies and applied to disaster site operations related to typhoons and storms, droughts, heavy snowfall, ground displacement, heat wave, and heavy rainfall. Although the limitation of timely imaging of satellite is a challenging issue in emergent disaster situation, it can be solved through international cooperation to cope with global disasters led by domestic and international space development agencies and disaster organizations. This article of special issue deals with the scientific disaster management technologies using remote sensing and advanced equipments of NDMI in order to detect and monitor national disasters occurred by global abnormal climate change around the Korean Peninsula: satellite-based disaster monitoring technologies which can detect and monitor disaster in early stage and advanced investigation equipments which can collect high-quality geo-information data at disaster site.

Application of Atmospheric Correction to KOMPSAT for Agriculture Monitoring (농경지 관측을 위한 KOMPSAT 대기보정 적용 및 평가)

  • Ahn, Ho-yong;Ryu, Jae-Hyun;Na, Sang-il;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1951-1963
    • /
    • 2021
  • Remote sensing data using earth observation satellites in agricultural environment monitoring has many advantages over other methods in terms of time, space, and efficiency. Since the sensor mounted on the satellite measures the energy that sunlight is reflected back to the ground, noise is generated in the process of being scattered, absorbed, and reflected by the Earth's atmosphere. Therefore, in order to accurately measure the energy reflected on the ground (radiance), atmospheric correction, which must remove noise caused by the effect of the atmosphere, should be preceded. In this study, atmospheric correction sensitivity analysis, inter-satellite cross-analysis, and comparative analysis with ground observation data were performed to evaluate the application of KOMPSAT-3 satellite's atmospheric correction for agricultural application. As a result, in all cases, the surface reflectance after atmospheric correction showed a higher mutual agreement than the TOA reflectance before atmospheric correction, and it is possible to produce the time series vegetation index of the same standard. However, additional research is needed for quantitative analysis of the sensitivity of atmospheric input parameters and the tilt angle.