• Title/Summary/Keyword: Satellites data

Search Result 668, Processing Time 0.031 seconds

The Horizontal Wind and Vertical Motion Field Derived from the NOAA Polar Orbiting Satellites

  • Lee, Dong-Kyou
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.41-47
    • /
    • 1988
  • The operational NOAA satellite temperature soundings are utilized to determine the horizontal wind and vertical motion fields for a polar low case over the East Asian region by solving the nonlinear balance equation and the omega equation. Preliminary results demonstrate that the balanced wind and vertical motion fields derived from the satellite data give reasonable synoptic patterns associated with the polar low. This encourages the use of satellite information as inputs in the numerical weather prediction models.

The Implementation of Insertion Algorithm(Sea Mount, Internal Wave, Ocean Eddy) and Smoothing Techniques for the Grid Environment Data (격자형 해양자료에 대한 자연현상(해산, 내부파, 와동류) 삽입 및 Smoothing 구현)

  • Kim, ChangJin;Na, YoungNam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.800-809
    • /
    • 2014
  • The gridded environmental data is usually provided by the numerical simulation coupled with a data assimilation technique and various inter- or extrapolation algorithms, both of which are based on the observation spanning from simple equipments to satellites. But it is difficult to represent the natural phenomenon such as sea mount, internal-wave, warm eddy in modeling or observation because of increase in the complexity of model. This paper introduces the algorithm artificially representing the natural phenomenon and the techniques applying it to the gridded volume data and smoothing for natural effects. Moreover, the inserted results are analyzed by use of graphical tool. The results can be used for the battle simulation or acoustic model.

COMPARISON OF TEMPERATURE DERIVED FROM THE MICROWAVE SOUNDING UNIT AND MONTHLY UPPER AIR DATA.

  • Hwang, Byong-Jun;Kim, So-Hyun;Chung, Hyo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.491-495
    • /
    • 1999
  • We compared the satellite observed temperature with the radiosonde observed temperature in the Korean Peninsula. The radiosonde observed data were obtained from four upper air observation stations in the Korean Peninsula from 1981 to 1998, and that was compared with the satellite observed data of the channel-2 and channel-4 of microwave sounding unit(MSU) on board NOAA series of polar-orbiting satellites. The radiosonde data were reconstructed into monthly radiosonde T$_{b}$ using MSU weighting function. The monthly climatology shows radiosonde T$_{b2}$ is higher than MSU T$_{b2}$ in summer. The correlation between MSU T$_{b2}$ and radiosonde T$_{b2}$ is 0.72-0.76 and 0.73-0.81 between MSU T$_{b4}$ and radiosonde T$_{b4}$.

  • PDF

NCURO DATA RETRIEVAL ALGORITHM IN FORMOSAT-3 GPS RADIO OCCULTATION OBSERVATION OF GRAVITY WAVE ACTIVITY

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Liou, Yuei-An;Yan, Shian-Kun;Huang, Cheng-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.192-195
    • /
    • 2008
  • Radio occultation (RO) has been used in the planetary science since Microlab-1 was launched in 1995. With the RO technique, the profiles of atmosphere and the global atmospheric data can be obtained. In 2006, Taiwan launched six low Earth orbit (LEO) satellites as the RO constellation mission, known as FORMOSAT-3. In order to retrieve the RO data from original data, a retrieval algorithm, NCURO, is developed. The input of NCURO algorithm is mainly the excess phase of GPS signal, and the output is the dry pressure and dry temperature. Using temperature profiles retrieved by NCURO algorithm, temperature perturbation and potential energy of gravity wave have been evaluated. In this paper, the retrieval algorithm and the global distribution of energy of gravity waves are described and demonstrated.

  • PDF

The Development of Driving Algorithm for an Unmanned Vehicle with Multiple-GPS's (다중 GPS를 이용한 무인자동차의 주행 알고리즘 개발)

  • Moon, Hee-Chang;Son, Young-Jin;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • A navigation system is one of the important components of an unmanned ground vehicle (UGV). A GPS receiver collects data signals transmitted by (Earth orbiting) satellites. However, these data signals may contain many errors resulting misinformation and depending on one's position (environment), reception may be impossible. The proposed self-driven algorithm uses three low-cost GPS in order to minimize errors of existing inexpensive single GPS's driving algorithm. By using reliable final data, which is analyzed and combined from each of three GPS's received data signals, gathering a vehicle's steering performance information and its current pin-point position is improved even with error containing signals or from a place where signal gathering is impossible. The purpose of this thesis is to explain navigation system algorithm using multiple GPS and compass sensor and prove the algorithm through experiments.

The Research about Aerial photographing system(PKNU No.2) development

  • Kim, Ho-Yong;Choi, Chul-Uong;Lee, Eun-Khung;Jun, Sung-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.110-112
    • /
    • 2003
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multispectral automatic Aerial photographic system. This system's Multi-spectral camera can catch the visible (RGB) and infrared (NIR) bands (3032${\ast}$2008 pixel) image. Our system consists of a thermal infrared camera and automatic balance control, and it managed and controlled by a palm-top computer. And it includes a camera gimbals system, GPS receiver, weather sensor and etc. As a result, we have successfully tested its ability to acquire aerial photography, weather data, as well as GPS data, making it a very flexible tool for environmental data monitoring.

  • PDF

Development of Receiving and Image Processing System of GMS/WEFAX Using PC(II) - Software for Receiving and Image Processing - (PC를 이용한 GMS/WEFAX 수신 및 영상처리 시스템 개발(II) - 수신 및 영상처리 소프트 웨어 -)

  • ;;Yun, Gi-Joon;Park, Jong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.1
    • /
    • pp.37-49
    • /
    • 1993
  • In this research, the WEF AX and APT(Automatic Picture Transmission) data receiving and image processing software using PC/AT called WADIPS(WEFAX and APT Data Integrated Processing System) Software has been developed. The main functions of WADIPS software are follow : 1) Real time receiving and saving to hard disk of WEFAX and APT data 2) B/W(Black and White) and false color display 3) Image enhancement using histogram stretch and color control 4) 2-4 times zooming 5) Hard copy of data using dithering and patterning 6) Animation 7) File management 8) On line help. WADIPS can be used in the offices or persons need real time meteorological information and education offices to teach the image processing technique and general characteristics of meteorological satellites.

Feasibility of Using Norad Orbital Elements for Pass Programming and Catalog Generation for High Resolution Satellite Images (고해상도 위성영상 촬영계획 수립 및 카탈로그 생성을 위한 NORAD 궤도 데이터의 이용 가능성 연구)

  • 신동석;김탁곤;곽성희;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • At present, many ground stations all over the world are using NORAD orbit element data in order to track and communicate with Earth orbiting satellites. The North American Aerospace Defense Command (NORAD) observes thousands of Earth orbiting objects on daily basis and provides their orbital information via internet. The orbital data provided by NORAD, which is also called two line element (TLE) sets, allows ground stations to predict the time-varying positions of satellites accurately enough to communicate with the satellites. In order to complete the mission of a high resolution remote sensing satellite which requires very high positional determination and control accuracy, however, a mission control and tracking ground station is dedicated for the observation and positional determination of the satellite rather than using NORAD orbital sets. In the case of KITSAT-3, NORAD orbital elements are currently used for image acquisition planning and for the processing of acquired images due to the absence of a dedicated KITSAT-3 tracking ground system. In this paper, we tested and analyzed the accuracy of NORAD orbital elements and the appropriate prediction model to determine how accurately a satellite acquisites an image of the location of interest and how accurately a ground processing system can generate the catalog of the images.

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

A Study on the Strategies of the Positioning of a Satellite on Observed Images by the Astronomical Telescope and the Observation and Initial Orbit Determination of Unidentified Space Objects

  • Choi, Jin;Jo, Jung-Hyun;Choi, Young-Jun;Cho, Gi-In;Kim, Jae-Hyuk;Bae, Young-Ho;Yim, Hong-Suh;Moon, Hong-Kyu;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.333-344
    • /
    • 2011
  • An optical tracking system has advantages for observing geostationary earth orbit (GEO) satellites relatively over other types of observation system. Regular surveying for unidentified space objects with the optical tracking system can be an early warning tool for the safety of five Korean active GEO satellites. Two strategies of positioning on the observed image of Communication, Ocean and Meteorological Satellite 1 are tested and compared. Photometric method has a half root mean square error against streak method. Also eccentricity method for initial orbit determination (IOD) is tested with simulation data and real observation data. Under 10 minutes observation time interval, eccentricity method shows relatively better IOD results than the other time interval. For follow-up observation of unidentified space objects, at least two consecutive observations are needed in 5 minutes to determine orbit for geosynchronous orbit space objects.