• Title/Summary/Keyword: Satellites Data

Search Result 666, Processing Time 0.027 seconds

A Suggestion for Surface Reflectance ARD Building of High-Resolution Satellite Images and Its Application (고해상도 위성 정보의 지표 반사도 Analysis-Ready Data (ARD) 구축과 응용을 위한 제언)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1215-1227
    • /
    • 2021
  • Surface reflectance, as a product of the absolute atmospheric correction process of low-orbit satellite imagery, is the basic data required for accurate vegetation analysis. The Commission on Earth Observation Satellite (CEOS) has conducted research and guidance to produce analysis-ready data (ARD) on surface reflectance products for immediate use by users. However, this trend is still in the early stages of research dealing with ARD for high-resolution multispectral images such as KOMPSAT-3A and CAS-500, as it targets medium- to low-resolution satellite images. This study first summarizes the types of distribution of ARD data according to existing cases. The link between Open Data Cube (ODC), the cloud-based satellite image application platforms, and ARD data was also explained. As a result, we present practical ARD deployment steps for high-resolution satellite images and several types of application models in the conceptual level for high-resolution satellite images deployed in ODC and cloud environments. In addition, data pricing policies, accuracy quality issue, platform applicability, cloud environment issues, and international cooperation regarding the proposed implementation and application model were discussed. International organizations related to Earth observation satellites, such as Group on Earth Observations (GEO) and Committee on Earth Observation Satellites (CEOS), are continuing to develop system technologies and standards for the spread of ARD and ODC, and these achievements are expanding to the private sector. Therefore, a satellite-holder country looking for worldwide markets for satellite images must develop a strategy to respond to this international trend.

Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data (천리안 위성 해양탑재체와 위성탑재 라이다 관측자료를 이용한 황사 에어러솔의 3차원 모니터링)

  • Lee, Kwon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.199-210
    • /
    • 2013
  • Detailed 3 dimensional structure of Asian dust plume has been analyzed from the retrieved aerosol data from two different satellites which are the Korea's $1^{st}$ geostationary satellite, namely the Communication, Ocean, Meteorological Satellite (COMS) spacecraft launched in 2010, and the NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). COMS spacecraft provides the first time resolved aerial aerosol maps by the systematically well-calibrated multispectral measurements from the Geostationary Ocean Color Imager (GOCI) instrument. GOCI data are used here to evaluate intensity, spatial distribution, and long-range transport of Asian dust plume during 1~2 May 2011. We found that the strong Asian dust plume showing AOT of 2~5 was lofted to the altitude around 2~4 km above the Earth's surface and transported over Yellow Sea with a speed of about 25 km/hr. The CALIPSO extinction coefficient and particulate depolarization ratio (PDR) profiles confirmed that nonspherical dust particles were enriched in the dust plume. This study is a first example of quantitative integration of GOCI and CALIOP measurements for clarifying the overall structure of an Asian dust event.

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

Satellite-based In-situ Monitoring of Space Weather: KSEM Mission and Data Application

  • Oh, Daehyeon;Kim, Jiyoung;Lee, Hyesook;Jang, Kun-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.175-183
    • /
    • 2018
  • Many recent satellites have mission periods longer than 10 years; thus, satellite-based local space weather monitoring is becoming more important than ever. This article describes the instruments and data applications of the Korea Space wEather Monitor (KSEM), which is a space weather payload of the GeoKompsat-2A (GK-2A) geostationary satellite. The KSEM payload consists of energetic particle detectors, magnetometers, and a satellite charging monitor. KSEM will provide accurate measurements of the energetic particle flux and three-axis magnetic field, which are the most essential elements of space weather events, and use sensors and external data such as GOES and DSCOVR to provide five essential space weather products. The longitude of GK-2A is $128.2^{\circ}E$, while those of the GOES satellite series are $75^{\circ}W$ and $135^{\circ}W$. Multi-satellite measurements of a wide distribution of geostationary equatorial orbits by KSEM/GK-2A and other satellites will enable the development, improvement, and verification of new space weather forecasting models. KSEM employs a service-oriented magnetometer designed by ESA to reduce magnetic noise from the satellite in real time with a very short boom (1 m), which demonstrates that a satellite-based magnetometer can be made simpler and more convenient without losing any performance.

Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

  • Park, Ji-Eun;Park, Kyung-Ae;Park, Young-Je;Han, Hee-Jeong
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.315-328
    • /
    • 2019
  • Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor. Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

China's Satellite Research and Development to Collect Electronic Signals for Marine Reconnaissance to Surrounding Nations (중국의 주변국 해양감시를 위한 전자신호 수집위성 연구개발)

  • Lee, Yongsik;Aom, Sangho;Lim, Jaesung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • China has invested for military satellite technology development to construct the space-based surveillance system from existing land-based and aerostat surveillance system since 1960s to react rapidly for deployment of marine force of United States and surrounding nations in west Pacific, south China sea and Indian ocean. China has also launched about 40 the Yaogan military intelligence satellites series for EO, SAR and ELINT fields since 2006 after the required technique with several technical experiment satellites launch and operational test. ELINT satellites transmit data from satellite to earth station in real time with construction space-based network around it. Those data are simultaneously delivered to Anti-Ship Ballistic Missile(ASBM) connected land-based C4ISR network for marine target attack. Therefore China has enhanced surveillance and attack capability to the surrounding marine nations with space-based network around it. In the future, It is considered that China will increase accurate location search, signal processing and analysis ability through a further study on its technology.

A Study on the Optimal Public Service for Environmental Satellite Observation data (환경위성 관측정보의 대국민 맞춤형 서비스 제공 방안 연구)

  • Choi, Won Jun;Eun, Jong Won;Kim, Sang-kyun;Choi, Gwang-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.56-61
    • /
    • 2017
  • Recently, the satellite development project in Korea has been changing from demand to focus on various purposes. Especially, it is proposed to process satellite data from a simple terrestrial image observation satellite and to produce high value added information. In order to expand demand for satellite information, it is necessary to develop customized information and to provide information that reflects the needs of the final target population. In this study, we conducted a questionnaire survey and analyzed the results to analyze the requirements for the customized services of environmental satellites. As a result, the environmental satellites were found to have a low awareness due to the launch and operation, but they were highly aware of the recent environmental issues such as fine dust. In addition, they are aware of the necessity of developing independent environmental satellites because they have a strong desire for environmental security, and they prefer to provide materials through media that are easy to publicize and access through the media.

Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS (러시아의 GLONASS 항법 파라미터 및 성능 분석)

  • Choi, Chang-Mook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The Russian Global Navigation Satellite System (GLONASS) has been fully recovered since October 2011, and it has been significantly modernized. The recently launched GLONASS 752 was set for successful performance on October 16, 2017 and has resulted in 24-satellite constellation with 22 second-generation (GLONASS-M) satellites, and a third-generation (GLONASS-K) satellite. Therefore, this paper is focused on not only the identified navigation parameters, but also the performance analysis of the project based on its real data received from the studied satellites. It is verified that the 5-11 satellites are available for receiving navigation signal at this time. The obtained values of GDOP, PDOP, HDOP, VDOP, and TDOP are 2.790, 2.424, 1.169, 2.123, and 1.381, noted respectively in standard deviation. In fact, the level of positioning precision is about 1.4m in standard deviation. As a result, the positioning performances of the measured GLONASS and GPS are virtually identical. Therefore, we determine that the GLONASS is expected to be expanded for future applications.

Study on Performance Analysis Technique of GPS Receiver According to Vehicle Attitude Change (항체 자세 변화에 따른 GPS 수신기의 성능분석 기법 연구)

  • Yoo Ki-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.13-21
    • /
    • 2004
  • GPS is widely used in various applications since GPS receivers are capable of measuring precise position and velocity in any weather condition for a relatively low cost. However, GPS requires more than four simultaneously visible GPS satellites for optimal performance. In high-motion, high-attitude-changing applications, there exist some situations where less than four satellites are visible or where the dilution of precision (DOP) is high. In this paper, we propose a simulation algorithm that predicts the performance of GPS navigation according to changes in vehicle attitude. We have compared simulation results with experimental results, where simulation results of the proposed algorithm are shown to closely match actual experimental data. This algorithm could be used to predict GPS navigational performance and to determine optimal GPS antenna position.

LEO Satellite Time Synchronization Architecture

  • Kwon, Ki-Ho;Kim, Day-Young;Lee, Jong-In;Kim, Hak-Jung;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-370
    • /
    • 2006
  • A GPS-based time synchronization technique employing a refined HW circuitry and SW algorithm is considered as fine time-management system for Low Earth Orbit (LEO) remote sensing satellites. By synchronizing the On-Board Time (OBT) within satellites to the GPS 1PPS, a very expensive, highly accurate on-board clock is not required to determine the precise on-board time management. Also, the satellite command generation in ground stations and postprocessing of earth observation data which a particular image is acquired. This paper analyses on-orbit verification of the existing satellite time sync architecture and presents a new time sync architecture, operation and relation between the OBT and the GPS time.

  • PDF