본 논문은 위성통신 기반의 위성 영상감시 센서 네트워크 적용을 위한 스마트 비젼 센서에 대해 기술한다. 스마트 비젼센서 단말은 현장에서 산불, 연기, 침입자 움직임 등의 이벤트를 자동감지하면서 높은 성능 신뢰도, 견고한 하드웨어 내구성, 용이한 유지보수, 끊김없는 통신유지 기능들이 요구된다. 이러한 요구사항들을 만족시키기 위하여 스마트 비젼 센서가 내장된 초소형 위성통신 단말을 제안하며 위성 송수신 기능과 더불어 고 신뢰도의 임베디드 영상분석 및 영상압축 기능을 처리한다. 제안하는 비젼 센서 알고리즘의 컴퓨터 시뮬레이션과 비젼 센서 시제품 시험을 통하여 영상감시 성능을 검증하였으며 실용성을 확인하였다.
한국방송공학회 1996년도 Proceedings International Workshop on New Video Media Technology
/
pp.1-6
/
1996
To promote academic researches on earth environment utilizing satellite data, research infrastructure such as satellite data reception processing, distribution and archival systems should be fully provided. The means to enhance the infrastructure were discussed by a working group and“Satellite Data Center via Network”has been proposed. This concept has three principles; (1) To realize necessary functions by organizing experts distributed all over Japan and connecting them by network, (2) To realize“Satellite Data Center via Network”for GMS and NOAA Satellites, which are widely used for research, and (3) Satellite data set oriented to specific research area should be generated by researchers having definite research purposes of sensor algorithms and hugh volume data processing. Utilization of the Science Information Network (SINET) has been discussed to realize this concept, and to accelerate this project an experiment“Network Utilization for Wide Area Use of Satellite Image Data”under“Cooperative Experiment on Multimedia Communication”has been introduced. And the roles of the Institute of Industrial Science, University of Tokyo to contribute this project has been described.
Since satellite images generally include clouds in the atmosphere, it is essential to detect or mask clouds before satellite image processing. Clouds were detected using physical characteristics of clouds in previous research. Cloud detection methods using deep learning techniques such as CNN or the modified U-Net in image segmentation field have been studied recently. Since image segmentation is the process of assigning a label to every pixel in an image, precise pixel-based dataset is required for cloud detection. Obtaining accurate training datasets is more important than a network configuration in image segmentation for cloud detection. Existing deep learning techniques used different training datasets. And test datasets were extracted from intra-dataset which were acquired by same sensor and procedure as training dataset. Different datasets make it difficult to determine which network shows a better overall performance. To verify the effectiveness of the cloud detection network such as Cloud-Net, two types of networks were trained using the cloud dataset from KOMPSAT-3 images provided by the AIHUB site and the L8-Cloud dataset from Landsat8 images which was publicly opened by a Cloud-Net author. Test data from intra-dataset of KOMPSAT-3 cloud dataset were used for validating the network. The simulation results show that the network trained with KOMPSAT-3 cloud dataset shows good performance on the network trained with L8-Cloud dataset. Because Landsat8 and KOMPSAT-3 satellite images have different GSDs, making it difficult to achieve good results from cross-sensor validation. The network could be superior for intra-dataset, but it could be inferior for cross-sensor data. It is necessary to study techniques that show good results in cross-senor validation dataset in the future.
본 논문에서는 에너지 센서 네트워크 적용을 위한 AC 전력센싱 기능과 지능형 대기전력 차단제어 기능을 가진 무선 스마트 플러그 설계와 적응식 대기전력 차단제어 알고리즘을 제안하고 구현하였다. 적응식 대기전력 차단제어 알고리즘은 사무기기나 가전기기마다 상이한 대기전력 문턱치를 학습기능에 의해 자동 감지하고, 적응 설정되게 함으로서 사용자의 편이성과 신뢰성 높은 대기전력 차단제어 기능을 제공하여 에너지소비 절감 효과를 극대화 할 수 있도록 하였다. 구현된 시제품의 기능을 검증한 결과, 설계 요구기능을 모두 만족하였으며 대기전력 소비를 절감할 수 있는 지능형 전력센서로서 실용성이 있음을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권3호
/
pp.990-1013
/
2015
Deploying sensors into a target region is a key issue to be solved in building a wireless sensor network. Various deployment algorithms have been proposed by the researchers, and most of them are evaluated under the ideal conditions. Therefore, they cannot reflect the real environment encountered during the deployment. Moreover, it is almost impossible to evaluate an algorithm through practical deployment. Because the deployment of sensor networks require a lot of nodes, and some deployment areas are dangerous for human. This paper proposes a deployment approach to solve the problems mentioned above. Our approach relies on the satellite images and the Virtual Force Algorithm (VFA). It first extracts the topography and elevation information of the deployment area from the high resolution satellite images, and then deploys nodes on them with an improved VFA. The simulation results show that the coverage rate of our method is approximately 15% higher than that of the classical VFA in complex environment.
한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
/
pp.123-126
/
2005
Wireless Sensor Networks will revolutionize applications such as environmental monitoring, home automation, and logistics. We developed forest fire surveillance system. In this paper, Considering the fact that in Korea, during November to May, forest fires occur very frequently causing catastrophic damages on the valuable environment, Although exists other forest fire surveillance system such as surveillance camera tower, infrared ray sensor system and satellite system. Preexistence surveillance system can't real-time surveillance, monitoring, database and automatic alarm. But, forest fire surveillance system(FFSS) support above. In this paper, we describes a system development approach for a wireless sensor network based FFSS that is to be used to measure temperature and humidity as well as being fitted with a smoke detector. Such a device can be used as an early warning fire detection system and real-time surveillance in the area of a bush fire or endangered public infrastructure. Once the system has being development, a mesh network topology will be implemented with the chosen sensor node with the aim of developing a sophisticated mesh network.
본 논문에서는 하 폐수 처리 시설에서 측정하는 슬러지 농도 및 TN/TP의 센서 데이터를 수집하여 효율적인 WiFi기반의 상태 감시 모니터링 시스템을 구현하기 위한 WiFi 망 구축을 제안하였다. 하 폐수 처리 시설에서 슬러지 및 TN/TP 측정 장비들로부터 수집한 센서 데이터 값을 기존 WiFi에 쓰이는 망 구조를 하 폐수 처리 시설에 특화된 망 구조로 개선하였다. 본 논문에서는 PC 뿐만 아니라 스마트 디바이스(스마트폰, 스마트패드, 타블렛 PC 등) 기반의 모니터링이 가능하도록 상태 감시 모니터링 시스템을 설계하여 실시간 상태 확인이 가능하도록 함으로써 사용자의 접근성과 편의성을 향상시켰다. 또한 효율적인 데이터를 전달하기 위한 WiFi 망을 구축하고, 센서 통신 네트워크 분석을 통해 그 효율성을 입증함으로써 제안 기술의 유용성을 확인하였다.
무선 센서 네트워크 하에서 불균일 네트워크의 에너지 효율은 주요 이슈 중의 하나로 고려된다. 불균일 네트워크에서, 개별 노드 초기 에너지의 무작위 분포는 네트워크 불안정을 초래할 수 있다. 따라서 네트워크 상 각 노드의 동작 시간 증가와 에너지 소비의 공평성 유지를 위해서는 적합한 방법이 마련되어야 한다. 본 논문에서는 서로 다른 시나리오의 불균일 네트워크 하의 분산 클러스터링 프로토콜(DCP)의 성능 평가를 보여준다. 본 시뮬레이션 결과는 불균일 네트워크에서의 LEACH 프로토콜 결과와 비교하였다. 추가적으로 불균일 네트워크에서의 시스템 성능을 균일 네트워크와 비교함으로써, 불균형 초기 에너지가 시스템의 개별 노드의 수명에 미치는 영향을 설명한다. 시뮬레이션 수행 결과 균일 및 불균일 네트워크에서 LEACH 프로토콜과의 성능 비교 결과는 DCP의 성능이 모든 경우에 성능 우위에 있음을 나타내었다.
Journal of information and communication convergence engineering
/
제6권3호
/
pp.249-254
/
2008
Moored ocean buoys are technically feasible approach for making sustained time series observation in the oceans and will be an important component of any long-term ocean observing system. The 3M disc buoy carried Zeno 3200, MCCB, Orbcomm, Global Star and Bluetooth module. The deployments have relied on Orbcomm and Global Star as the primary satellite communications system. In addition to detailing our practical experience in the use of Orbcomm and Global Star as high latitudes, we will present some of scientific sensor results regarding real-time oceanographic and meteorological parameters such as wind speed, wave height and etc. In this paper we present the design and implementation of a small-scale buoy sensor network. One of the major challenges is that the network is hard to access after its deployment and hence both hardware and software must be robust and reliable.
영상정합은 다시기 및 다중센서 고해상도 위성영상을 효과적으로 활용하기 위해 필수적으로 선행되는 중요한 과정이다. 널리 각광받고 있는 딥러닝 기법은 위성영상에서 복잡하고 세밀한 특징을 추출하여 영상 간 빠르고 정확한 유사도 판별에 사용될 수 있음에도 불구하고, 학습자료의 양과 질이 결과에 영향을 미치는 딥러닝 모델의 한계와 고해상도 위성영상 기반 학습자료 구축의 어려움에 따라 고해상도 위성영상의 정합에는 제한적으로 적용되어 왔다. 이에 본 연구는 영상정합에서 가장 많은 시간을 소요하는 정합쌍 추출 과정에서 딥러닝 기반 기법의 적용성을 확인하기 위하여, 편향성이 존재하는 고해상도 위성영상 데이터베이스로부터 딥러닝 영상매칭 학습자료를 구축하고 학습자료의 구성이 정합쌍 추출 정확도에 미치는 영향을 분석하였다. 학습자료는 12장의 다시기 및 다중센서 고해상도 위성영상에 대하여 격자 기반의 Scale Invariant Feature Transform(SIFT) 알고리즘을 이용하여 추출한 영상쌍에 참과 거짓의 레이블(label)을 할당한 정합쌍과 오정합쌍의 집합으로 구축되도록 하였다. 구축된 학습자료로부터 정합쌍 추출을 위해 제안된 Siamese convolutional neural network (SCNN) 모델은 동일한 두 개의 합성곱 신경망 구조에 한 쌍을 이루는 두 영상을 하나씩 통과시킴으로써 학습을 진행하고 추출된 특징의 비교를 통해 유사도를 판별한다. 본 연구를 통해 고해상도 위성영상 데이터 베이스로부터 취득된 자료를 딥러닝 학습자료로 활용 가능하며 이종센서 영상을 적절히 조합하여 영상매칭 과정의 효율을 높일 수 있음을 확인하였다. 다중센서 고해상도 위성영상을 활용한 딥러닝 기반 영상매칭 기법은 안정적인 성능을 바탕으로 기존 수작업 기반의 특징 추출 방법을 대체하고, 나아가 통합적인 딥러닝 기반 영상정합 프레임워크로 발전될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.