• Title/Summary/Keyword: Satellite remote sensing

Search Result 2,506, Processing Time 0.029 seconds

Objective Aperture Effects for the Quantitative Analysis in Electron Tomography (전자토모그래피의 정량적 분석에서 대물렌즈 조리개의 영향)

  • Kim, Jin-Gyu;Lee, Sang-Hee;Kweon, Hee-Seok;Jeong, Jong-Man;Jeong, Won-Gu;Lee, Su-Jeong;Jou, Hyeong-Tae;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • We have evaluated the effects of experimental factors on transmitted electron beam intensities for quantitative analysis in electron tomography. For the correct application of Beer's law in electron tomography, the transmitted beam intensity should reflect the net effect of mass properties on beam path. So, the any other effects of the objective aperture and the specimen holder on beam path should be removed. The cut-off effects of objective aperture were examined using Quanti-foil holey carbon film and a transmission electron microscope operated at 120 kV. The transmitted beam intensities with $30{\mu}m$ objective aperture dropped about 16.7% compared to electron beam intensities without the objective aperture. Also, the additional losses of about 14.2% at high tilt angles were occurred by cut-off effects of the objective apertures. For the precise quantitative analysis in electron tomography, the effect of the objective aperture on transmitted electron beam intensities should be considered. It is desirable that 2-D tilt series images are obtained without the objective aperture for correct application of Bee's law.

Geophysical study on the summit of the Dokdo volcano (독도화산체 정상부에 대한 지구물리학적 조사 연구)

  • Kim, Chang-Hwan;Jeong, Eui-Young;Park, Chan-Hong;Jou, Hyeong-Tae;Lee, Seung-Hoon;Kim, Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.207-212
    • /
    • 2008
  • Bathymetry, side scan sonar, and magnetic survey data for the summit area of Dokdo obtained by Korea Ocean Research & Development Institute in 1999, 2004, and 2007 were analyzed to investigate the geophysical characteristics of the summit. Bathymetry and topographic data for the summit of Dokdo show uneven seabed and irregular undulations from costal line to -90 m in water depth, indicating the effects of partial erosions and taluses. The stepped slope in the bathymetry is supposed to be a coastal terrace suggesting repetition of transgressions and regressions in the Quaternary. The bathymetry and the side scan sonar data show a small crater, assumed to be formed by post volcanisms, at depth of $-100\;{\sim}\;-120\;m$ in the northeastern and the northwestern parts of the survey area. Except some areas with shallow sand sedimentary deposits, there are rocky seafloor and lack of sediments in the side scan sonar images of the survey area, dominantly. The analytic signal of the magnetic anomaly coincides with other geophysical results regarding to the location of the residual crater. The geophysical constraints of the summit of Dokdo propose that the islets and the rocky seabed elongated northeastward and northwestward from the islets might be the southern crater of the Dokdo volcano.

  • PDF

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

The change of land cover classification accuracies according to spatial resolution in case of Sunchon bay coastal wetland (위성영상 해상도에 따른 순천만 해안습지의 분류 정확도 변화)

  • Ku, Cha-Yong;Hwang, Chul-Sue
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.

  • PDF

Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram (세미베리오그램을 이용한 KoFlux 광릉(산림) 및 해남(농경지) 관측지 지면모수의 공간 비균질성 정량화)

  • Moon, Sang-Ki;Ryu, Young-Ryel;Lee, Dong-Ho;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • The remote sensing observations of land surface properties are inevitably influenced by the landscape heterogeneity. In this paper, we introduce a geostatistical technique to provide a quantitative interpretation of landscape heterogeneity in terms of key land surface parameters. The study areas consist of the two KoFlux sites: (1) the Gwangneung site, covered with temperate mixed forests on a complex terrain, and (2) the Haenam site with mixed croplands on a relatively flat terrain. The semivariogram and fractal analyses were performed for both sites to characterize the spatial heterogeneity of two radiation parameters, i.e., land surface temperature (LST) and albedo. These parameters are the main factors affecting the reflected longwave and shortwave radiation components from the two study sites. We derived them from the high-resolution Landsat ETM+ satellite images collected on 23 Sep. 2001 and 14 Feb. 2002. The results of our analysis show that the characteristic scales of albedo was >1 km at the Gwangneung site and approximately 0.3 km at the Haenam site. For LST, the scale of heterogeneity was also >1 km at the Gwangneung site and >0.6 to 1.0 km at the Haenam site. At both sites, there was little change in the characteristic scales of the two parameters between the two different seasons.

Classification and Mapping of Forest Type Using Landsat TM Data and B/W Infrared Aerial Photograph (Landsat TM Data와 흑백적외선(黑白赤外線) 항공사진(航空寫眞)을 이용(利用)한 임상구분(林相區分)에 관(關)한 연구(硏究))

  • Kim, Kap Duk;Lee, Seung Ho;Kim, Cheol Min
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.3
    • /
    • pp.263-273
    • /
    • 1989
  • Accurate and cost-effective classification of forest vegetation is the primary goal for forest management and utilization of forest resources. Aerial photograph and remote sensing are the most frequent and effective method in forest resources inventories. TM and MSS are the principal observing instruments on the Landsat-4 and -5 earth observing satellite. Especially TM has considerably greater spatial, spectral, and radiometric resolution power than MSS, that is, the IFOV of TM at a nadir is 30m compared to 80m for MSS. In this study, we used TM data to classify forest types and compared the result with forest type map manufactured by interpretation of B/W infrared photographs. As a result, land use types were well defined with TM data. But classifying forest types was a little difficult and indistinct. However, the spectral signatures of forest in every season and growing stages remained as problems to be solved, and also the most effective selection and combination method of bands for differentiating the spectral plots among classes.

  • PDF

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

Design and Implementation of OASIS Considering Web Accessibility (웹 접근성을 고려한 전통의학정보포털 설계 및 구현)

  • Han, Jeong-Min;Jang, Hyun-Chul;Kim, Jin-Hyun;Yea, Sang-Jun;Kim, Sang-Kyun;Kim, Chul;Song, Mi-Young
    • Journal of Information Management
    • /
    • v.41 no.4
    • /
    • pp.187-204
    • /
    • 2010
  • This study shows evaluation of how much OASIS meets "the korean web content accessibility guidelines" and analysis of some of the accessibility problems and their solutions in OASIS(Oriental Medicine Advanced Searching Integrated System) which is the only web site that offers papers and project information related to Traditional Medicine in Korea. The evaluation criteria to determine if OASIS is accessible is classified into four sub items; Perceivable - if information and user interface components is presentable to users in ways they can perceive, Operable - if user interface components and navigation are operable, Understandable - if information and the operation of user interface are understandable, Robust - if content is robust enough that it can be interpreted reliably by a wide variety of user agents, including assistive technologies. Based on the measured results, OASIS has just been redesigned and implemented in more accessible and effective way. OASIS that improves web accessibility for the disabled is expected to help them study oriental medicine more easily and conveniently by providing equal access and equal opportunity to use the web.

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest (온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석)

  • Han, Sang Hak;Yun, Chung Weon;Lee, Sanghun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.361-370
    • /
    • 2020
  • Long-term observation of the life cycle of plants allows the identification of critical signals of the effects of climate change on plants. Indeed, plant phenology is the simplest approach to detect climate change. Observation of seasonal changes in plants using digital repeat imaging helps in overcoming the limitations of both traditional methods and satellite remote sensing. In this study, we demonstrate the utility of camera-based repeat digital imaging in this context. We observed the biological events of plants and quantified their phenophases in the northern temperate type deciduous broadleaf forest of Jeombong Mountain. This study aimed to identify trends in seasonal characteristics of Quercus mongolica (deciduous broadleaf forest) and Pinus densiflora (evergreen coniferous forest). The vegetation index, green chromatic coordinate (GCC), was calculated from the RGB channel image data. The magnitude of the GCC amplitude was smaller in the evergreen coniferous forest than in the deciduous forest. The slope of the GCC (increased in spring and decreased in autumn) was moderate in the evergreen coniferous forest compared with that in the deciduous forest. In the pine forest, the beginning of growth occurred earlier than that in the red oak forest, whereas the end of growth was later. Verification of the accuracy of the phenophases showed high accuracy with root-mean-square error (RMSE) values of 0.008 (region of interest [ROI]1) and 0.006 (ROI3). These results reflect the tendency of the GCC trajectory in a northern temperate type deciduous broadleaf forest. Based on the results, we propose that repeat imaging using digital cameras will be useful for the observation of phenophases.