• Title/Summary/Keyword: Satellite propulsion

Search Result 211, Processing Time 0.026 seconds

First Bipropellant Propulsion System for Spacecraft in Korea

  • Han, Cho-Young;Chae, Jong-Won;Park, Eung-Sik;Baek, Myung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.307-310
    • /
    • 2008
  • In the framework of COMS(Communication, Ocean and Meteorological Satellite) programme, the first bipropellant propulsion system for GEO satellite has been developed successfully. So far Korea has its own experience of development of a monopropellant propulsion system for LEO satellites, i.e., KOMPSAT's. Other types of propulsion systems for a satellite, such as cold gas and electric propulsion etc., are being developed somewhere in Korea, however they are not commercialised yet, apart from those two systems aforementioned. This paper mainly focused on the design of the Chemical Propulsion System(CPS) for the COMS, joint scientific and communications satellite. It includes descriptions of the general system design and a summary of the supporting analysis performed to verify suitability for space flight. Essentially it provides an overview and guide to the various engineering rationale generated in support of the COMS CPS design activities. The manufacture and subsequent testing of COMS CPS are briefly discussed. Feasibility of COMS CPS to an interplanetary mission is proposed as well.

  • PDF

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

Thermal Analysis of Spacecraft Propulsion System and its Validation

  • Han, Cho-Young;Park, Joon-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.847-856
    • /
    • 2004
  • Heaters for the spacecraft propulsion system are sized to prevent propellant from catastrophic freezing. For this purpose, thermal mathematical model (TMM) of the propulsion system is developed. Calculation output is compared with the results obtained from thermal vacuum test in order to check the validity of TMM. Despite a little discrepancy between the two types of results, both of them are qualitatively compatible. It is concluded that the propulsion system heaters are correctly sized and TMM can be used as a thermal design tool for the spacecraft propulsion system.

Types and Characteristics of Chemical Propulsion Systems for Repersentative Korean Satellites (국내의 대표적 인공위성 화학추진시스템의 형식 및 특성)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.747-752
    • /
    • 2007
  • Domestic satellite development programme is generally classified into two categories: COMS as GEO satellite and KOMPSAT as LEO one. Each satellite has the on-board propulsion system fulfilling its own mission requirements. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. It is the well-known Chemical Propulsion System(CPS) using bipropellants. On the other hand, the monopropellant propulsion system is employed in KOMPSAT, and its main role is on-station attitude control excluding the orbit transfer function. In this study, these two representative propulsion systems are compared and analysed as well, in terms of essential differences and important characteristics.

A study on Propulsion Fuel consumption rate for orbit maintenance of LEO

  • 정도희;공창덕
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.10-10
    • /
    • 2000
  • For low Earth orbit, the atmosphere causes orbit altitude to decrease, If this decrease is not corrected by the satellite propulsive unit, the orbit decoys continuously unit reaches the dense atmosphere and satellite life ends. If active orbit maintenance is mode by satellite propulsive unit then fuel consumption is necessary, which must be considered in the satellite design. Especially interesting is the method for evaluating the fuel consumption role for maintenance of elliptical orbit developed in this paper.(omitted)

  • PDF

The Study of Pressurant Inflow Prediction Using Temperature Change of Geostationary Satellite Propellant System (정지궤도 인공위성 추진시스템의 온도변화를 통한 배관내 가압제 유입 예측기법 연구)

  • Park Eung Sik;Jun Hyoung Yoll;Park Bong Kyu;Han Cho Young;Choi Seong Bong;Kim Yong Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.96-99
    • /
    • 2005
  • The geostationary satellite propulsion system has thermistors which can measure liquid propellant temperature at tanks, pipes and etc. In the satellite propulsion system with several tanks, the propellant in the tanks is moved by temperature change and this temperature pattern is constant. In this paper, the temperature change pattern of KOREASAT 1 propulsion system is compared and the prediction study of pressurant inflow using temperature change of geostationary satellite propulsion system is described.

  • PDF

Thermal Design for Satellite Propulsion System by Thermal Analysis (열해석에 의한 인공위성 추진시스템 열설계)

  • Han, Cho-Young;Kim, Jeong-Soo;Rhee, Seung-Wu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Thermal design fur satellite propulsion system has been performed. Overall design requirements and the constitution for propulsion system is described. To meet the thermal design requirements, both a primary and a redundant heater circuit, each with two thermostats placed in series, will protect each hydrazine-wetted components, even if one heater circuit fails to operate. Heater power is turned off if any one of these thermostats is opened at its higher setpoint. Thus, even if one thermostat is failed closed, the second thermostat will turn off the heater. All such components shall be insulated with MLI. Propulsion heater sizing based on the constant worst cold case condition is conducted through thermal analysis. All heaters selected fur propulsion components operate to prevent propellant freezing satisfying the thermal requirements for the propulsion subsystem over the worst case average voltage, i.e. 25 volts.

Development of Propulsion System for LEO Satellite (저궤도 위성용 추진계 개발)

  • Yu Myoung-Jong;Lee Kyun-Ho;Han Cho-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.83-86
    • /
    • 2004
  • Likewise all that of the propulsion system, development of Propulsion System for LEO Satellite is laborous tasks to surmount technical barriers of the advanced countries as well as to satisfy the requirements of evolving satellites and changes of functions, structures and etc. Those will be presented and discussed here that the process of technical approach to have developed the KOMPSAT propulsion system, and some challenging area to overcome to develop future LEO satellite propulsion system.

  • PDF

The Study of De-orbit Time Prediction Using Temperature Change of Geostationary Satellite Propellant System (정지궤도위성 추진시스템의 온도변화를 이용한 위성폐기시점 추정연구)

  • Park Eung Sik;Park Bong Kyu;Han Cho Young;Kim Yong Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.5-10
    • /
    • 2005
  • The geostationary satellite propulsion system has thermistors which can measure liquid propellant temperature at tanks, pipes and etc. In the satellite propulsion system with several tanks, the propellant in the tanks is moved by temperature change and this temperature pattern is constant. In this paper, the temperature change pattern of KOREASAT 1 propulsion system is compared and the prediction study of pressurant inflow using temperature change of geostationary satellite propulsion system is described.

  • PDF

Performance Verification of LEO Satellite Propulsion System based on Early On-orbit Operation Analysis (초기 궤도운용 분석 기반 저궤도 지구관측위성 추진시스템 성능 검증)

  • Won, Su-Hee;Chae, Jongwon;Kim, Sukyum;Jo, Sungkwon;Jun, Hyoung Yoll
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.58-62
    • /
    • 2016
  • The satellite propulsion system provides the required thrust to insert a satellite into the desired orbit after separation from the launch vehicle and to control orbit inclination or compensate altitude loss due to drag after inserted into the desired orbit. The on-orbit performance of LEO satellite propulsion system according to operation mode was verified based on the results analysis for early on-orbit operation. The temperature trends of components and tubing were checked and the resultant trends were within the normal range as well.