• Title/Summary/Keyword: Satellite orbit

Search Result 1,182, Processing Time 0.032 seconds

Velocity Loss Due to Atmospheric Drag and Orbit Lifetime Estimation (항력에 의한 속도 손실 및 궤도 수명 예측)

  • Park, Chang-Su;Jo, Sang-Beom;No, Ung-Rae
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.205-212
    • /
    • 2006
  • Atmospheric drag is the most significant factor effecting the low Earth satellites under the altitude of 800 km Although the atmospheric density of the low Earth orbit is very low compared to that of the sea level, the accumulated effect of the atmospheric drag slowly lowers the satellite velocity at the perigee. Decrease in velocity at perigee directly causes decrease in altitude at apogee which changes the eccentricity of the orbit. The orbit finally reaches a circular orbit before reentering the Earth. This paper states the methods of calculating the atmospheric drag and the lifetime of the satellite. The lifetime of the kick motor and the satellites which will be used on KSLV-L are calculated by Satellite Tool Kit.

  • PDF

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

Satellite orbit determination by E.K.F. and smoothing filter (확장칼만필터와 스무딩필터를 이용한 위성의 궤도결정)

  • 박수홍;최철환;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.457-462
    • /
    • 1990
  • Lately, at an epock of full-scale satellite ranching plan of Korea, T.T.C (Tracking, Telemetery & Command) is a indispensable part. In this paper, particular attention is given to orbit determination problem of role of T.T.C. Orbit determination, which is applied to Kalman Filter and Smoothing Filter, use the observation data which is given by satellite tracking radar system, and then the simulation is accomplished. As a result, it shows effectiveness.

  • PDF

An Analysis on the Long-Term Variation of the GPS Broadcast Ephemeris Errors (GPS 방송궤도력 오차의 장기간 변화 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.421-428
    • /
    • 2014
  • GPS satellite positions can be obtained from the navigation message transmitted from the GPS satellite. In this paper, the accuracy of broadcast orbit and clock are analyzed by comparing with the NGA precise ephemeris. For analyzing global and local orbit errors in 2004 to 2013, GPS satellite visibilities are calculated in Korea. Local RMS of 3D orbit error and SISRE are 4 cm and 3 cm less than global RMS of 3D orbit errors and SISRE. Orbit and clock errors are calculated for each GPS satellite Block for 10 years. SISRE of Block IIA satellites are 2.8 times greater than Block IIF satellites. The correlation between orbit errors and shadow condition is analyzed. The orbit errors in shadow is 2.1% higher than that in sunlight. Correlation analysis between the orbit errors and solar/geomagnetic index shows that orbit errors has a high correlation with from 2004 to 2008. However, the correlation became low since 2009.

Research and Application of Satellite Orbit Simulation for Analysis of Optimal Satellite Images by Disaster Type : Case of Typhoon MITAG (2019) (재난유형별 최적 위성영상 분석을 위한 위성 궤도 시뮬레이션 연구 및 적용 : 태풍 미탁(2019) 사례)

  • So-Mang, LIM;Ki-Mook, KANG;Eui-Ho, HWANG;Wan-Sik, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.210-221
    • /
    • 2022
  • In order to promptly respond to disasters, the era of new spaces has opened where satellite images with various characteristics can be used. As the number of satellites in operation at home and abroad increases and the characteristics of satellite sensors vary, it is necessary to find satellite images optimized for disaster types. Disaster types were divided into typhoons, heavy rains, droughts, forest fires, etc., and the optimal satellite images were selected for each type of disaster considering satellite orbits, active/passive sensors, spatial resolution, wavelength bands, and revisit cycles. Each satellite orbit TLE (Two Line Element) information was applied to the SGP4 (Simplified General Perturbations version 4) model to develop a satellite orbit simulation algorithm. The developed algorithm simulated the satellite orbit at 10-second intervals and selected an accurate observation area by considering the angle of incidence of each sensor. The satellite orbit simulation algorithm was applied to the case of Typhoon Mitag in 2019 and compared with the actual satellite list. Through the analyzed results, the time and area of the captured image and the image to be recorded were analyzed within a few seconds to select the optimal satellite image according to the type of disaster. In the future, it is intended to serve as a basis for building a system that can promptly request and secure satellite images in the event of a disaster.

Operation of the Radio Occultation Mission in KOMPSAT-5

  • Choi, Man-Soo;Lee, Woo-Kyoung;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • Korea multi-purpose satellite-5 (KOMPSAT-5) is a low earth orbit (LEO) satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD) requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD) system which consists of a space-borne dual frequency global positioning system (GPS) receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

Illumination Variations in Near-Equatorial Orbit Imaging: A Case Study with Simulated Data of RAZAKSAT

  • Hassan, Aida-Hayati-Mohd;Hashim, Mazlan;Arshad, Ahmad-Sabirin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1052-1054
    • /
    • 2003
  • RAZAKSAT is a second micro-satellite mission by Malaysian Satellite Program and is expected for launch in June 2004. Designed to orbit the earth at low-equatorial orbit, RAZAKSAT will meet Malaysia’s immediate needs to rapid data acquisition (real time and more repetitions) to address many operational issues of remote sensing applications, which require availability of current data sets. RAZAKSAT will be among the first remote sensing satellite to orbit the earth at low inclination along the equator, 9$^{\circ}$ with 685km altitude, hence, allows optimal geographical information and environment change within equatorial region be observed with a unique revisit characteristics. The satellite primary payload is MAC, a push-broom type camera with 2.5m of ground sampling distance (GSD) in panchromatic band and 5m of GSD in four multi-spectral bands. This paper describes on the variation of illumination anticipated from simulated RAZAKSAT image, examine its implication to its ground leaving radiances for major applications.

  • PDF

Stereoscopic 3D Modelling Approach with KOMPSAT-2 Satellite Data

  • Tserennadmid, T.;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2009
  • This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.

Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis

  • Kim, Young-Rok;Park, Eunseo;Kucharski, Daniel;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.189-200
    • /
    • 2015
  • In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.

Quick Evaluations of the KOMPSAT-1 Orbit Maneuvers Using Small Sets of Real-time GPS Navigation Solutions

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.196-202
    • /
    • 2001
  • Quick evaluations of two in-plane orbit maneuvers using small sets of real-time GPS navigation solutions were performed for the KOMPSAT-1 spacecraft operation. Real-time GPS navigation solutions of the KOMPSAT-1 were collected during the Korean Ground Station(KGS) pass. Only a few sets of position and velocity data after completion of the thruster firing were used for the quick maneuver evaluations. The results were used for antenna pointing data predictions for the next station contact. Normal orbit maneuver evaluations using large sets of playback GPS navigation solutions were also performed and the result were compared with the quick evaluation results.

  • PDF