• 제목/요약/키워드: Satellite observations

검색결과 463건 처리시간 0.031초

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo;Byon, Hye-Kyong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.879-881
    • /
    • 2003
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20${\sim}$30cm and 18${\sim}$24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15${\sim}$20cm and 10${\sim}$15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents(Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current(TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/sec) in the northeastern area of Tushima island with TWC, respectively.

  • PDF

ARGOS 위성 자료를 이용한 남인도양 케르겔른섬의 해수면 조사 (Sea level observations at Kerguelen island in the South Indian Ocean by ARGOS satellite data)

  • 윤홍주;김영섭;서애숙;정효상;안명환
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2000년도 춘계 학술대회 논문집 통권 3호 Proceedings of the 2000 KSRS Spring Meeting
    • /
    • pp.13-18
    • /
    • 2000
  • We observed sea level variation of the long time at Kerguelen island in the South Indian Ocean with ARGOS data and meteorological data during about 1 year(May 1993~March 1994) through using filter, spectral analysis, coherency and phase, and found characteristics for the two oceanic signal levels(detided oceanic signal level, h$_{detided}$ and seasonal oceanic level, h$_{corr.ib}$). The forms of variations are very well agreed to between ARGOS data and meteorological data for atmospheric pressure in the observed periods. The seasonal difference of sea level between Summer and Winter is about 1.6cm. Both the detided oceanic signal level(h$_{detided}$) variation and the inverted barometer level(h$_{ib}$) variation have a strong correlation for T>1day period bands. Characteristics of h$_{detided}$ variation are decided not by the influence of any meteorological distributions (pressure, winds, etc), but the influence of another factors(temperature, salinity, etc.) for T>2days periods bands. h$_{corr.ib}$ plays an very important role of sea level variation of the long time term(especially T>about 180days period bands).

  • PDF

위성해색자료의 대기보정 알고리즘 : OCTS-type과 CZCS-type 알고리즘의 성능비교 (Atmospheric correction algorithms for satellite ocean color data: performance comparison of "CTS-type" and "CZCS-type" algorithms)

  • Hajime Fukushima;Yasushi Mitomi;Takashi Otake;Mitsuhiro Toratani
    • 대한원격탐사학회지
    • /
    • 제14권3호
    • /
    • pp.262-276
    • /
    • 1998
  • The paper first describes the atmospheric correction algorithm for the Ocean Color and Temperature Scanner (OCTS) visible band data used at Earth Observation Center (EOC) of National Space Development Agenrr of japan (NASDA). It uses 10 candidate aerosol models including "Asian dust model" introduced in consideration of the unique feature of aerosols over the east Asian waters. Based on the observations at 670 and 865 nm bands where the reflectance of the water body can be discarded, the algorithm selects a pair of aerosol models that accounts best for the observed spectral reflectances to synthesize the aerosol reflectance in other bands. The paper also evaluates the performance of the algorithm by comparing the satellite estimates of water-leaving radiance and chlorophyll-a concentration with selected buoy- and ship-measured data. In comparison with the old CZCS-type atmospheric correction algorithm where the aerosol reflectance is assumed to be spectrally independent, the OCTS algorithm records factor 2-3 less error in estimating the normalized water-leaving radiances. In terms of chlorophyll-a concentration estimation, however, the accuracy stays very similar compared to that of the CZCS-type algorithm. This is considered to be due to the nature of in-water algorithm which relies on spectral ratio of water-leaving radiances.

Reconstruction of Terrestrial Water Storage of GRACE/GFO Using Convolutional Neural Network and Climate Data

  • Jeon, Woohyu;Kim, Jae-Seung;Seo, Ki-Weon
    • 한국지구과학회지
    • /
    • 제42권4호
    • /
    • pp.445-458
    • /
    • 2021
  • Gravity Recovery and Climate Experiment (GRACE) gravimeter satellites observed the Earth gravity field with unprecedented accuracy since 2002. After the termination of GRACE mission, GRACE Follow-on (GFO) satellites successively observe global gravity field, but there is missing period between GRACE and GFO about one year. Many previous studies estimated terrestrial water storage (TWS) changes using hydrological models, vertical displacements from global navigation satellite system observations, altimetry, and satellite laser ranging for a continuity of GRACE and GFO data. Recently, in order to predict TWS changes, various machine learning methods are developed such as artificial neural network and multi-linear regression. Previous studies used hydrological and climate data simultaneously as input data of the learning process. Further, they excluded linear trends in input data and GRACE/GFO data because the trend components obtained from GRACE/GFO data were assumed to be the same for other periods. However, hydrological models include high uncertainties, and observational period of GRACE/GFO is not long enough to estimate reliable TWS trends. In this study, we used convolutional neural networks (CNN) method incorporating only climate data set (temperature, evaporation, and precipitation) to predict TWS variations in the missing period of GRACE/GFO. We also make CNN model learn the linear trend of GRACE/GFO data. In most river basins considered in this study, our CNN model successfully predicts seasonal and long-term variations of TWS change.

한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구 (A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model)

  • 김은희;조영순;이은희;이용희
    • 대기
    • /
    • 제31권3호
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

GMAP 2021 캠페인 기간 용인지역 오존 연직 분포 관측 (The Observation of Ozone Vertical Profile in Yongin, Korea During the GMAP 2021 Field Campaign)

  • 류호선;구자호;김형규;이나현;이원진;김주완
    • 대기
    • /
    • 제32권3호
    • /
    • pp.247-261
    • /
    • 2022
  • The importance of ozone monitoring has been growing due to the polar ozone depletion and increasing tropospheric ozone concentration over many Asian countries, including South Korea. In-situ measurement of the vertical ozone structure has advantages for ozone research, but observations are not sufficient. In this study, ozonesonde measurements were performed from October to November in Yongin during the GMAP (The GEMS Map of Air Pollution) 2021 campaign. The procedure for ozonesonde preparation and initial analysis of the observed ozone profile are documented. The observed ozone concentrations are in good agreement with previous studies in the troposphere, and they capture the stratospheric ozone distribution as well, including stratosphere-troposphere exchange event. These balloon-borne in situ measurements can contribute to the evaluation of remote sensing measurements such as Geostationary Environment Monitoring Spectrometer (GEMS). This document focuses on providing essential information of ozonesonde preparation and measurement for domestic researchers.

Site-Specific Error-Cross Correlation-Informed Quadruple Collocation Approach for Improved Global Precipitation Estimates

  • Alcantara, Angelika;Ahn Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.180-180
    • /
    • 2023
  • To improve global risk management, understanding the characteristics and distribution of precipitation is crucial. However, obtaining spatially and temporally resolved climatic data remains challenging due to sparse gauge observations and limited data availability, despite the use of satellite and reanalysis products. To address this challenge, merging available precipitation products has been introduced to generate spatially and temporally reliable data by taking advantage of the strength of the individual products. However, most of the existing studies utilize all the available products without considering the varying performances of each dataset in different regions. Comprehensively considering the relative contributions of each parent dataset is necessary since their contributions may vary significantly and utilizing all the available datasets for data merging may lead to significant data redundancy issues. Hence, for this study, we introduce a site-specific precipitation merging method that utilizes the Quadruple Collocation (QC) approach, which acknowledges the existence of error-cross correlation between the parent datasets, to create a high-resolution global daily precipitation data from 2001-2020. The performance of multiple gridded precipitation products are first evaluated per region to determine the best combination of quadruplets to be utilized in estimating the error variances through the QC approach and computation of merging weights. The merged precipitation is then computed by adding the precipitation from each dataset in the quadruplet multiplied by each respective merging weight. Our results show that our approach holds promise for generating reliable global precipitation data for data-scarce regions lacking spatially and temporally resolved precipitation data.

  • PDF

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • 우주기술과 응용
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

Selection of Three (E)UV Channels for Solar Satellite Missions by Deep Learning

  • Lim, Daye;Moon, Yong-Jae;Park, Eunsu;Lee, Jin-Yi
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.42.2-43
    • /
    • 2021
  • We address a question of what are three main channels that can best translate other channels in ultraviolet (UV) and extreme UV (EUV) observations. For this, we compare the image translations among the nine channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory using a deep learning model based on conditional generative adversarial networks. In this study, we develop 170 deep learning models: 72 models for single-channel input, 56 models for double-channel input, and 42 models for triple-channel input. All models have a single-channel output. Then we evaluate the model results by pixel-to-pixel correlation coefficients (CCs) within the solar disk. Major results from this study are as follows. First, the model with 131 Å shows the best performance (average CC = 0.84) among single-channel models. Second, the model with 131 and 1600 Å shows the best translation (average CC = 0.95) among double-channel models. Third, among the triple-channel models with the highest average CC (0.97), the model with 131, 1600, and 304 Å is suggested in that the minimum CC (0.96) is the highest. Interestingly they are representative coronal, photospheric, and chromospheric lines, respectively. Our results may be used as a secondary perspective in addition to primary scientific purposes in selecting a few channels of an UV/EUV imaging instrument for future solar satellite missions.

  • PDF

지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석 (Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics)

  • 김종성;이정우
    • 대한환경공학회지
    • /
    • 제38권10호
    • /
    • pp.551-557
    • /
    • 2016
  • 여러 환경요인을 예측하는데 위성영상과 측정데이터의 접목은 정확도를 향상시킬 수 있는 잠재력을 가지고 있다. 하지만 습지 토양에 포함되어있는 영양염류의 성분 등을 예측함에 있어 위성영상의 활용 효과는 잘 알려져 있지 않다. 따라서, 본 연구에서는 지구통계학 중 블록크리깅과 회귀크리깅을 자연습지인 에버글레이드에 위치한 수자원관리유역의 토양 내 총인 예측에 적용하였다. 토양시료의 측정된 총인농도를 이용하여 블록크리깅을, 측정값 외에 30 m의 공간해상도를 가지고 있는 위성영상인 Landsat ETM+로부터 추출한 스펙트럼 데이터 및 분광지수 등을 독립변인으로 하여 회귀크리깅을 실시한 결과, 블록크리깅의 결정계수는 0.59, 회귀크리깅의 결정계수는 0.49로 나타났다. 측정 자료만을 이용한 블록크리깅의 예측 오차가 위성영상을 이용한 회귀크리깅의 예측 오차보다 더 작았으나, 각각의 방법을 이용하여 총인 농도를 수자원관리유역에 매핑한 결과 두 경우 모두 비슷한 경향을 보였고, 회귀크리깅의 경우 연구대상유역의 독특하고 복잡한 경관요소들을 더욱 잘 표현할 수 있었다.