• 제목/요약/키워드: Satellite observations

검색결과 461건 처리시간 0.034초

LX 위성측위 인프라기반 네트워크 RTK를 이용한 측위성능 분석 (Analysis of Positioning Accuracy Using LX GNSS Network RTK)

  • 하지현;김현호;정완석
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.507-514
    • /
    • 2015
  • LX 한국국토정보공사 공간정보연구원에서는 2011년부터 LX 위성측위 (GNSS; global navigation satellite system) 네트워크를 구축하고 2014년부터 MAC (master-auxiliary correction) 방식의 네트워크 실시간 이동측위 (RTK; real-time kinematic) 전국망 운영 실험을 하고 있다. 본 연구에서는 LX GNSS 인프라의 구축 현황을 소개하고 LX GNSS RTK 서비스를 이용한 측위 성능 분석을 결과를 제시한다. 측위 성능 분석은 전북 전주, 서울, 그리고 인천에 설치된 지적도근점 중 총 25개를 이용하였으며, 1회 관측, 2회 중복관측, 그리고 5회 중복관측을 수행하였다. 측위 성능 비교를 위하여 한국국토정보공사 MAC과 국토지리정보원 VRS로 측량한 성과를 지적도근점의 고시좌표와 각각 비교하였다. 그 결과, 두 시스템이 평균오차와 표준편차가 1~2cm 수준으로 유사한 성능을 보였다.

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Case study on the Accuracy Assessment of the rainrate from the Precipitation Radar of TRMM Satellite over Korean Peninsula

  • Chung, Hyo-Sang;Park, Hye-Sook;Noh, Yoo-Jeong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.103-106
    • /
    • 1999
  • The Tropical Rainfall Measuring Mission(TRMM) is a United States-Japan project for rain measurement from space. The first spaceborne Precipitation Radar(PR) has been installed aboard the TRMM satellite. The ground based validation of the TRMM satellite observations was conducted by TRMM science team through a Global Validation Program(GVP) consisted of 10 or more ground validation sites throughout the tropics. However, TRMM radar should always be validated and assessed against reference data to be used in Korean Peninsula because the rainrates measured with satellite varies by time and space. We have analyzed errors in the comparison of rainrates measured with the TRMM/PR and the ground-based instrument i.e. Automatic Weather System(AWS) by means of statistical methods. Preliminary results show that the near surface rainrate of TRMM/PR are highly correlated with ground measurements especially for the very deep convective rain clouds, though the correlation is changed according to the type and amount of precipitating clouds. Results also show that TRMM/PR instrument is inclined to underestimate the rainrate on the whole over Korea than the AWS measurement for the cases of heavy rainfall.

  • PDF

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

천리안 위성 해양탑재체와 위성탑재 라이다 관측자료를 이용한 황사 에어러솔의 3차원 모니터링 (Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data)

  • 이권호
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.199-210
    • /
    • 2013
  • Detailed 3 dimensional structure of Asian dust plume has been analyzed from the retrieved aerosol data from two different satellites which are the Korea's $1^{st}$ geostationary satellite, namely the Communication, Ocean, Meteorological Satellite (COMS) spacecraft launched in 2010, and the NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). COMS spacecraft provides the first time resolved aerial aerosol maps by the systematically well-calibrated multispectral measurements from the Geostationary Ocean Color Imager (GOCI) instrument. GOCI data are used here to evaluate intensity, spatial distribution, and long-range transport of Asian dust plume during 1~2 May 2011. We found that the strong Asian dust plume showing AOT of 2~5 was lofted to the altitude around 2~4 km above the Earth's surface and transported over Yellow Sea with a speed of about 25 km/hr. The CALIPSO extinction coefficient and particulate depolarization ratio (PDR) profiles confirmed that nonspherical dust particles were enriched in the dust plume. This study is a first example of quantitative integration of GOCI and CALIOP measurements for clarifying the overall structure of an Asian dust event.

정지궤도 기상위성 자료를 활용한 강우유형별 강우량 추정연구 (A Study on the Algorithm for Estimating Rainfall According to the Rainfall Type Using Geostationary Meteorological Satellite Data)

  • 이은주;서명석
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2006
  • Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.

  • PDF

GLONASS 위성 가시성 분석을 위한 알마낙 기반 궤도 예측 (Orbit Prediction using Almanac for GLONASS Satellite Visibility Analysis)

  • 김혜인;박관동
    • 한국측량학회지
    • /
    • 제27권2호
    • /
    • pp.119-127
    • /
    • 2009
  • 다양한 차세대 위성항법시스템들이 개발되고 있지만, 현재 사용자가 측위에 이용할 수 있는 위성항법시스템은 GPS와 GLONASS 뿐이다. 이 연구에서는 GLONASS의 궤도력 중에서 알마낙을 이용하여 위성궤도를 예측하고 예측궤도의 정확도를 평가하였다. 예측궤도를 생성하기 위하여 알마낙 파일에 포함되어 있는 케플러 궤도요소와 궤도방정식을 이용하였으며, 그 결과는 정밀궤도력과의 좌표 비교를 통하여 정확도를 검증하였다. 그 결과, 7일 동안 예측한 위성궤도의 3차원 최대오차는 155.4km로 나타났으며, RMS 오차는 56.3km로 나타났다. 또한 실제관측 결과와의 비교를 통해 궤도오차가 위성의 가시성을 분석하는데 무리가 없는 수준임을 확인하였다.

GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적 (Near-Real-Time Ship Tracking using GPS Precise Point Positioning)

  • 하지현;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제14권6호
    • /
    • pp.783-790
    • /
    • 2010
  • 현재 대부분의 선박은 해상에서의 안전한 운항을 위하여 GPS를 이용하여 선박 위치를 파악하고 있다. 이 연구에서는 GPS 정밀단독측위기법을 이용하여 준실시간으로 해상 선박의 위치를 결정하고, 그 정밀도를 분석하였다. 이를 위하여 선박에 GPS 장비를 설치하여 남해안 관측을 실시하였다. 정밀단독측위 기법을 이용한 GPS 관측데이터 처리를 위하여 JPL에서 개발한 GIPSY-OASIS를 이용하였으며, 안테나 위상 중심 변동량과 해양 조석하중에 의한 지각 변동량, 그리고 방위각 방향으로의 대류층 지연량을 보정하였다. 그 결과 이 연구에서 산출한 준실시간 좌표는 ~1cm 수준의 정밀도를 달성하였다.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.