• 제목/요약/키워드: Satellite observation

검색결과 940건 처리시간 0.027초

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

천리안위성 궤도상 시험의 지구 관측 임무 운영 (Earth Observation Mission Operation of COMS during In-Orbit Test)

  • 조영민
    • 한국위성정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.89-100
    • /
    • 2013
  • 통신, 해양, 기상의 세 분야 복합 임무를 수행하는 천리안위성(Communication Ocean Meteorological Satellite: COMS)이 2010년 6월 27일 지구정지궤도로 발사된 이후 궤도상시험을 마치고 현재 정상운영 임무를 수행하고 있다. 천리안위성은 정지궤도의 동경 $128.2^{\circ}$에 위치한다. 세 임무를 수행하기 위해 천리안위성에는 3가지 탑재체인 기상탑재체(Meteorological Imager: MI), 해양탑재체(Geostationary Ocean Color Imager: GOCI), 통신탑재체(Ka-band Antenna)가 실려 있다. 각 탑재체는 각각의 임무를 전담하여 수행한다. 기상탑재체(MI)와 해양탑재체(GOCI)는 각각 기상 관측과 해양 모니터링을 위한 지구 관측 임무를 수행한다. 궤도상시험 기간 동안 천리안위성과 지상국의 기능과 성능이 지구 관측 임무 운영을 통해 점검되었다. 지구 관측 임무는 지구의 여러 영역에 대한 기상 현상 관측과 한반도 주변의 해양 환경 모니터링으로 구성된다. 천리안위성 궤도상시험에 대한 기상 및 해양 임무 운영 특성을 기술하고 천리안위성 임무 계획에 대해 논하였다. 궤도상시험 임무 운영 결과로서 시험 기간 동안의 임무 계획 결과와 위성 영상 수신 상황에 대한 통계 분석 및 종합 결과를 제시하여 궤도상시험에서 검증된 천리안위성의 임무 운영 능력과 달성된 위성 영상 수신 역량을 연구하였다.

Collaborative Optimization을 이용한 지구관측위성의 다분야 통합 최적 개념설계 (Multidisciplinary Design Optimization of Earth Observation Satellite Conceptual Design using Collaborative Optimization)

  • 김홍래;장영근
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.568-583
    • /
    • 2015
  • 본 논문에서는 다분야 통합 설계최적화(MDO : Multidisciplinary Design Optimization)를 적용한 지구관측위성의 개념설계 과정 및 결과를 기술하였다. 현재까지 구축된 지구관측 위성의 데이터베이스를 기반으로 주요 파라미터에 대한 개념설계식을 정립하였으며, 다분야 통합 최적설계 아키텍처 중 CO(Collaborative Optimization) 기반을 이용하여 지구관측 위성 시스템의 최적 개념설계를 수행할 수 있는 설계 도구를 개발하였다. 주어진 제약조건을 만족시키면서 위성의 총 질량을 최소화하는 것을 설계 목표로 설정하였으며, 최적화 알고리즘으로는 SQP(Sequential Quadratic Programming)를 이용하였다. 다분야 통합 최적설계를 적용한 개념설계 결과와 ASNARO-1 및 IKONOS-2 위성 규격의 비교를 통해 해당설계도구의 유용성을 검증하였다.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

일본의 원격탐사 활용 실태 및 정책 동향 (Status of Remote Sensing and Data Policy in Japan)

  • 윤보열;장희욱;김윤수
    • 항공우주산업기술동향
    • /
    • 제9권1호
    • /
    • pp.45-54
    • /
    • 2011
  • 최근 전 세계 다양한 지구관측 위성이 개발 및 발사됨에 따라 다양한 분야로 위성영상 자료의 활용이 확대되고 그에 따른 지구관측 위성영상 시장의 규모가 점점 커지고 있는 추세이다. 일본의 경우 빈번하게 발생하는 재해재난 분야에 대응하고, 실질적으로 피해복구 지원에 ALOS 위성자료를 적극적으로 활용하고 있으며, 전 세계 재해재난 저감 활동에 자국이 보유한 위성자료를 지원하여 국제사회에 기여하는 바가 크다고 할 수 있다. 본 논문을 통하여 일본의 원격탐사 활용 실태와 관련 정책 동향을 살펴보고자 한다. 또한, 위성기반의 원격탐사 기술이 국민 실생활에 어떻게 효율적으로 기여할 수 있을 지에 대한 방안과 관련 지원을 위해 요구되는기반시스템의구축에대해서조사하였다.

  • PDF

고공탐사 로케트 개발에 관한 시스템 Integration (The system integration of sounding rocket)

  • 김두환;류장수;승성표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.627-632
    • /
    • 1988
  • Through the introduction and understanding of the total system design and the system integration for sounding rocket with the purpose of the pure scientific research, that is, atmospheric research, resources observation, space observation and etc, the system will be operated easily, readily and effectively in the development and manufacturing of launching vehicles for the scientific satellite and communication satellite in the future.

  • PDF

차세대 중형위성을 활용한 온실가스 관측 정보 획득 방안 연구 (A Study of the Acquisition Plan for GHG Data using CAS500)

  • 최원준;김상균
    • 한국위성정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2017
  • 우리나라 기후변화의 양상은 전세계 평균에 비해 높은 양상으로 나타나 기후변화 대응을 위한 적응 정책이 절실한 상황이다. 특히, 기후변화에 따른 우리나라의 경제적 손실이 2,800조원에 달할 것으로 예측되는 상황으로 최소 300조원의 천문학적인 비용이 기후변화 적응에 필요할 것으로 연구되었다.(KEI, 2011) 이러한 막대한 비용의 적절한 투입시기, 분야 설정 등 효율적인 투입을 위해 정확한 기후변화 예측 및 영향이 필수적이다. 이러한 기후변화 예측 및 영향 분석을 위해서는 전구뿐만 아니라, 한반도를 비롯한 동북아시아에서 불균질하게 나타나고 있는 온실가스 농도의 정확한 파악이 필요하다. 본 연구에서는 기후변화의 유발인자인 온실가스 관측을 위한 위성 개발에 대한 필요성에 대해 분석하고, 해외 온실가스 관측 위성 개발 현황에 대해 조사하여 저궤도 환경위성 개발 방안에 대해 제시하고자 한다. 온실가스 관측 위성은 우주개발중장기계획에 반영된 차세대 중형위성과 연계, 추진하여 기상, 농림, 토양 관측 위성과 함께 기후변화 이외에 수질, 토양, 생태로 환경 감시 범위를 확대할 수 있을 것으로 예상된다.

저궤도 지구관측 위성의 통계적 에너지 해석 (Statistical Energy Analysis of Low-Altitude Earth Observation Satellite)

  • 우성현;김홍배;임종민;김경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.197-202
    • /
    • 2006
  • The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.

  • PDF

COMS 특별세션 (THERMAL CONTROL DESIGN FOR COMS)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF