• 제목/요약/키워드: Satellite measurements

검색결과 544건 처리시간 0.023초

Ranging Data Accuracy in K13 S-Band Antenna

  • Ahn Sang-il;Park Dong-Chul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.464-466
    • /
    • 2004
  • Ranging and 2-way Doppler measurements are very essential source for orbit determination in LEOP (Launch and Early Operation). This paper shows ranging system features of 13M TT &C antenna and test results recently acquired with KOMPSAT-l. Ranging and 2-way Doppler measurements were compared with KOMPSAT-I GPS telemetry data. Through comparison, it was found that constant and accurate ranging measurements are available with 13M antenna system. Ranging and Doppler measurement function is expected to be used for KOMPSAT-1 and KOMPSAT-2.

  • PDF

Gyroless Attitude Estimation of the Sun-Pointing Mode Satellite

  • Ahn, Hyo-Sung;Lee, Seon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.876-881
    • /
    • 2003
  • Reliable attitude estimation during the launch and early orbit phase is a critical issue for a satellite. Typically gyroscopes and other sensors are utilized to estimate the attitude during this phase. It is difficult to estimate the attitude quickly and reliably using gyroscopes because it requires a large computational load and accurate sensor measurements. Furthermore, the gyroscope failure may lead to the loss of the satellite. This paper suggests a simple attitude estimation method of a low earth orbit satellite without using gyroscopes, but only using sun sensors and magnetometers in the sun-acquisition mode. Using Kompsat-I telemetry data, we verified that the suggested algorithm provides attitude estimation within 3 degrees on each axis.

  • PDF

Torque and Force Measurement of a Prototype HAU Reaction Wheel and the Effect of Disturbance on the Attitude Stability of Spacecraft

  • Oh, Hwa-Suk;Kwon, Jae-Wook;Lee, Hyunwoo;Nam, Myung-Ryong;Park, Dong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.743-751
    • /
    • 2001
  • A Prototype reaction wheel, named the Hankuk Aviation University (HAU) reaction wheel, has been developed for KAISTSAT satellite series. Torque and force disturbances are inherent in reaction wheels, and thus the force and torque characteristics should be examined for every newly developed reaction wheel. The torque and force disturbance noises in the prototype HAU reaction wheel are measured with a torque-measuring table developed for the present study. A new measuring procedure based on a simple principle is applied for the measurements. The frequency characteristics of the torque and force noises are analyzed by examining the power spectral density. The effect of the torque noise on the attitude stability is also examined through numerical simulations with a single-axis attitude model. The noise-induced attitude error and jitter and found to be well below the specified error limits for the KAISTSAT satellite series.

  • PDF

인공위성 재질별 반사율 및 분광유형 측정 (MEASUREMENTS OF ALBEDO AND SPECTRAL PATTERNS OF MAN-MADE SATELLITE MATERIALS)

  • 이동규;김상준;이준호;한원용;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권4호
    • /
    • pp.319-326
    • /
    • 2002
  • 인공위성의 본체 및 탑재체 제작에 사용되고 있는 구성품 재질 12점을 수집하여 가시광 영역에서 지상 분광실험을 수행한 결과 위성체 구성품 재질별로 분광반사율과 분광유형이 뚜렷이 차이를 보였고 위성체의 재질별 분류 및 식별이 가능하였다. 인공위성 재질의 지상 분광실험 결과는 운용초기에 있는 인공위성이나 우주잔해물을 실제로 분광관측하여 얻은 자료와 비교함으로써 대상물의 재질유형 및 재질구성비, 그리고 크기와 중량을 예측하는데 활용될 수 있을 것이다.

The Application of Satellite Positioning Technology and its Industrialization in China

  • Lizhong, Zheng;Xiuwan, Chen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.331-336
    • /
    • 2002
  • Satellite positioning technology has been widely used in all kinds of military and civil land, marine, space and aeronautical target positioning tasks, navigation activities and accurate surveying measurements since 90s in the last century due to it advantage in providing all-weather, real-time, three dimensional and high precision positioning information, as well as speed and accurate timing information. By now, it has already formed a new hi-tech industry basically. This paper briefly reviews the development of the global satellite positioning and navigation technologies including the basic information of China′s "Plough navigation system", introduces the history of satellite positioning technology and its major application fields as well as the status quo of this being industrialized trade in China, gives an account of the writers′ vision for the application and prospect of the satellite positioning technologies in China, and approaches the tactics and stresses of the satellite positioning technology′s application and its industrialization future in China.

  • PDF

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Validation of Significant Wave Height from Satellite Altimeter in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Woo, Hye-Jin;Lee, Eun-Young;Hong, Sungwook;Kim, Kum-Lan
    • 대한원격탐사학회지
    • /
    • 제29권6호
    • /
    • pp.631-644
    • /
    • 2013
  • Significant Wave Height (SWH) data measured by satellite altimeters (Topex/Poseidon, Jason-1, Envisat, and Jason-2) were validated in the seas around Korea by comparison with wave height measurements from marine meteorological buoy stations of Korea Meteorological Administration (KMA). A total of 1,070 collocation matchups between Ku-band satellite altimeter data and buoy data were obtained for the periods of the four satellites from 1992 to the present. In the case of C-band and S-band observations, 1,086 matchups were obtained and used to assess the accuracy of satellite SWH. Root-Mean-Square (RMS) errors of satellite SWH measured with Ku-band were evaluated to roughly 0.2_2.1 m. Comparisons of the RMS errors and bias errors between different frequency bands revealed that SWH observed with Ku-band was much more accurate than other frequencies, such as C-band or S-band. The differences between satellite SWH and buoy wave height, satellite minus buoy, revealed some dependence on the magnitude of the wave height. Satellite SWH tended to be overestimated at a range of low wave height of less than 1 m, and underestimated for high wave height of greater than 2 m. Such regional characteristics imply that satellite SWH should be carefully used when employed for diverse purposes such as validating wave model results or data assimilation procedures. Thus, this study confirmed that satellite SWH products should be continuously validated for regional applications.

A Study on Simultaneous Adjustment of GNSS Baseline Vectors and Terrestrial Measurements

  • Nguyen, Dinh Huy;Lee, Hungkyu;Yun, Seonghyeon
    • 한국측량학회지
    • /
    • 제38권5호
    • /
    • pp.415-423
    • /
    • 2020
  • GNSS (Global Navigation Satellite System) is mostly used for high-precise surveys due to its accuracy and efficiency. But this technique does not always fulfill the demanding accuracy in harsh operational environments such as urban canyon and forest. One of the remedies for overcoming this barrier is to compose a heterogeneous surveying network by adopting terrestrial measurements (i.e., distances and angles). Hence, this study dealt with the adjustment of heterogeneous surveying networks consisted of GNSS baseline vectors, distances, horizontal and vertical angles with a view to enhancing their accuracy and so as to derive an appropriate scheme of the measurement combination. Reviewing some technical issues of the network adjustments, the simulation, and experimental studies have been carried out, showing that the inclusion of the terrestrial measurements in the GNSS standalone overall increased the accuracy of the adjusted coordinates. Especially, if the distances, the horizontal angles, or both of them were simultaneously adjusted with GNSS baselines, the accuracy of the GNSS horizontal component was improved. Comparing the inclusion of the horizontal angles with those of the distances, the former has been more influential on accuracy than the latter even though the same number of measurements were employed in the network. On the other hand, results of the GNSS network adjustment together with the vertical angles demonstrated the enhancement of the vertical accuracy. As conclusion, this paper proposes a simultaneous adjustment of GNSS baselines and the terrestrial measurements for an effective scheme that overcomes the limitation of GNSS control surveys.

한국형 위성항법시스템의 UDRE 모니터링 분석 (UDRE Monitoring Analysis of Korean Satellite Navigation System)

  • 박종근;안종선;허문범;주정민;이기훈;성상경;이영재
    • 한국항공우주학회지
    • /
    • 제43권2호
    • /
    • pp.125-132
    • /
    • 2015
  • 본 논문은 한국형 위성항법시스템의 위성궤도, 위성시계 고장 검출이 가능한 UDRE에 대한 모니터링 알고리즘 분석을 수행하였다. UDRE 모니터링을 위한 의사거리 잔차 생성방법 중 대류권 지연오차와 수신기 시계바이어스 추정방법에 대해 새로운 알고리즘을 제안한다. 대류권 지연오차는 국내 기상데이터에 더욱 적합한 Saastamoinen 모델과 Neill 매핑함수의 조합 모델을 사용하였으며, 수신기 시계 바이어스 추정방법으로는 칼만필터를 사용한 기법을 사용하였다. 국내 지역에서 직접 수신한 위성데이터와 기상데이터를 사용한 UDRE 모니터링 분석을 통해 한국지역에 더욱 적합한 UDRE 모니터링 한계치(Threshold)를 도출하고 추 후 한국형 위성항법시스템의 고장검출 기법으로 활용할 수 있을 것으로 기대한다.

Real-Time Monitoring and Analysis of Power Systems with Synchronized Phasor Measurements

  • Kim, Hong-Rae
    • 조명전기설비학회논문지
    • /
    • 제21권9호
    • /
    • pp.101-108
    • /
    • 2007
  • State estimators are used to monitor the operating states of power systems in modern EMS. It iteratively calculates the voltage profile of the currently operating power system with voltage, current, and power measurements gathered from the entire system. All the measurements are usually assumed to be obtained simultaneously. It is practically impossible, however, to maintain the synchronism of the measurement data. Recently, phasor measurements synchronized via satellite are used for the operation of these power systems. This paper describes the modified state estimator used to support the processing of synchronized phasor measurements. Synchronized phasor measurements are found to provide synchronism of measurement data and improve the accuracy/redundancy of the measurement data for state estimation. The details of the developed state estimation program and some numerical results of operation are presented.