• Title/Summary/Keyword: Satellite map

Search Result 767, Processing Time 0.023 seconds

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

Analysis of Hydrological Impact by Typhoon RUSA using Landsat Images and Hydrological Model (Landsat영상과 수문모형을 이용한 태풍 RUSA에 의한 수문영향 분석)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.391-399
    • /
    • 2005
  • The purpose of this study is to evaluate hydrological impact by the land cover change of typhoon damage. For the typhoon RUSA (rainfall 1,402 mm) occurred in 2002 (August $31\;{\sim}$ September 1), satellite images of Landsat 7 ETM+ of September 29, 2000 and Landsat 5 TM of September 11, 2002 were selected, and each land cover was classified for Namdae-cheon watershed $192.7km^2$ located in the middle-eastern part of Korea Peninsula. SCS unit hydrograph for watershed runoff and Muskingum for streamflow routing of WMS HEC-1 was adopted. 30m resolution DEM & hydrological soil group using 1:50,000 soil map were prepared. The model was calibrated using three available data of storm events of 1985 to 1988 based on 1985 land cover condition. To predict the streamflow change by damaged land cover condition, rainfall of 50 years to 500 years frequency were generated using 2nd quantile of Huff method. The damaged land cover condition treated as bare soil surface increased streamflow of $50.1\;m^3/sec$ for 50 years rainfall frequency and $67.6\;m^3/sec$ for 500 years rainfall frequency based on AMC-I condition. There may be some speedy treatment by the government for the next coming typhoon damage.

Spatial Distribution of Tidal Flats in Korea (한국(韓國)의 간석지(干潟地) 분포(分布))

  • Jo, Myung-Hee;Jo, Wha-Ryong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.195-208
    • /
    • 1997
  • On the basis of the topographic maps in the 1910's and 1990's and the classification map of Landsat TM satellite image photographed on Sept 1, 1996, the spatial distribution and the current situation concerning tidal flats in Korea were studied by measuring the area with GIS Arc/Info system and examining the regional condition required to develop the tidal flats. The results are as follow; The tidal flat resources in Korea cover an area of about 3800 square meters, including the reclaimed one since the 1910's. And they are widely distributed in the west coast of South Jeonla, Kyunggi bay, Asan bay, the south coast of South Jeonla, Kunsan bay, Chunsoo bay, and the coast of South Kyungsang and Pusan when put in the order from bigger area. Given the area under the construction at present, more than 50% of the tidal flats are reclaimed ones. The tidal flats are being developed especially in Kyunggi and Asan bays because they perfectly measure up to the conditions required. For Kunsan bay, a remarkably good supply system of the alluvial sedimentary materials and a favorable coastline requirement for the coast of the South Jeonla also contribute to the development of the tidal flats. In the case study of Kunsan bay, it was shown that the shape of the tidal flat is making a continuous change and the area is getting bigger in terms of the multi-temporal change of the tidal flat development. However, while in the first half of the 20th century, the increasing rate of the area was considered to be rather high, it is considerably lowered almost to a standstill in the latter half of the century.

  • PDF

A Study on Forest Changes for A/R CDM in North Korea (A/R CDM을 위한 북한지역의 산림변화 연구)

  • Lee, Dong-Kun;Oh, Young-Chool;Kim, Jae-Uk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • A/R CDM(Afforestation/Reforestation Clean Development Mechanism) in Kyoto Mechanism means, either afforestation in the area used for other purposes more than 50 years or reforestation in the area used for other purposes on December 31st in 1989. South Korea has few sites due to the successful forestation in the past, but North Korea has not reforested the deforested lands since the mid-1970's. So these areas need to apply A/R CDM Project for restoration. The purposes of this study are to make a time series analysis in deforested areas and to estimate a feasibility of A/R CDM. To find the site satisfying A/R CDM business definition, land cover classification was applied using satellite images of the mid-1970's with good forestation, late 1980's including A/R CDM base year, and recent 2000's, and the chronological change was analyzed to categorize the possible sites. The North Korean topographical map of 1977 was used to verify land cover classification degree of 1970's, the land cover classification results made by the Ministry of Environment in 2000 were compared to verify the accuracy of 1980's results, and the land cover classification results in 2000's were verified by 2 site visits. The results of this study can be summarized as follows. The eligible A/R CDM sites are 605,156ha on the basis of the forestation change analysis in North Korea. Since the mid-1970's, 30.8% of the decreased forestation area of 1,966,306ha was classified into A/R CDM eligible sites. While other countries have the limited eligible sites, which has not been used for forestation since 1989 or which is being scattered, North Korea has large scale sites. Deforested sites are mainly around road and residential area, consequently give better accessibility for forestation than other countries. In conclusion, it is found that North Korea can provide efficient site for applying A/R COM Project to forestation restoring deforested land because of easy accessibility and existence of many possible sites due to artificial deforestation. Also, it is meaningful that the study suggests the application possibility of A/R COM Project to restore deforested land in North Korea and the related basic information through the chronological classification of the mid-1970's with good forestation, the late-1980's including A/R COM base year, and recent 2000's. It is expected that the study contributes to revitalization of A/R CDM Project and related research on North Korea forestation.

The Construction of Kinematic Survey System for the Efficiency of GPS Cadastral Survey (지적측량 효율성 향상을 위한 GPS 이동측량 시스템 구축)

  • 김경택;장지원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.389-398
    • /
    • 2002
  • As the necessity of land information has increased according to development of computer and Information-communication, people have been interested in the satellite measurement system that can update Cadastral and Geographical information rapidly and exactly. Most Cadastral base points which had limitation of measurement technology in the 1910s were less accurate and were destroyed through the Korean War. They also many problems in the process of reinstallation. So, they require the quick and correct method of measurement in re-equipment of a base point and a parcel based survey and so on. This study intends to present the GPS survey direction by understanding and analysing all sorts of problems rising in case of applying the GPS to cadastral area in order to increase the efficiency of the GPS measurement, and also develop the GPS kinematic survey program to apply to the efficiency of a kinematic survey. As a result of research, I could confirm the accuracy of Cadastral base points in Kwangju area by using Korea GPS array and a base point, and could get the result similar to existent cadastral survey result with the coordinate conversion program of Cadastral technology research institute. We however have to pay our attention to the transformation of the plane coordinates because the difference between tens of cm and the existing result can outbreak according to the Gauss conformal double projection method. And, I could figure out the practicality of the developed GPS kinematic survey program, compared with common use program. I expect that it can be applied to the digital cadastral survey and the cadastral map renewal as well.

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Classification and Mapping of Forest Type Using Landsat TM Data and B/W Infrared Aerial Photograph (Landsat TM Data와 흑백적외선(黑白赤外線) 항공사진(航空寫眞)을 이용(利用)한 임상구분(林相區分)에 관(關)한 연구(硏究))

  • Kim, Kap Duk;Lee, Seung Ho;Kim, Cheol Min
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.3
    • /
    • pp.263-273
    • /
    • 1989
  • Accurate and cost-effective classification of forest vegetation is the primary goal for forest management and utilization of forest resources. Aerial photograph and remote sensing are the most frequent and effective method in forest resources inventories. TM and MSS are the principal observing instruments on the Landsat-4 and -5 earth observing satellite. Especially TM has considerably greater spatial, spectral, and radiometric resolution power than MSS, that is, the IFOV of TM at a nadir is 30m compared to 80m for MSS. In this study, we used TM data to classify forest types and compared the result with forest type map manufactured by interpretation of B/W infrared photographs. As a result, land use types were well defined with TM data. But classifying forest types was a little difficult and indistinct. However, the spectral signatures of forest in every season and growing stages remained as problems to be solved, and also the most effective selection and combination method of bands for differentiating the spectral plots among classes.

  • PDF

Development of a River Maintenance Management Technology Related with National River Management Data (국가하천관리자료와 연계한 하천유지관리 기술개발)

  • Jo, Myung-Hee;Kim, Kyung-Jun;Kim, Hyun-Jung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.159-171
    • /
    • 2012
  • This study has developed a technology for river basin including the management of the data related with riverbed and the analysis of the riverbed maintenance based on the high-resolution imagery data and LiDAR (Light Detection and Raging) in order to enhance the utilization of river management by using RIMGIS(River Information Management GIS) and to acquire the advanced operation for river management. Using the detailed river topographical map specially designed in the form of LiDAR or high-resolution images, riverbed data and river bank channel information that are dynamically changed were informationized and established in the RIMGIS DB. At this stage, a monitoring techniques that is established in the river management system associated with RIMGIS and minimized the impact of riverbed maintenance (fluctuations) has been studied. In addition, functions and data structure of RIMGIS containing the information of geography and management of the river have been supplemented to make an improvement of the real-time management of the river. Furthermore, a technology that is capable of supplementing RIMGIS has been developed, making it feasible to maintain the river in use of structural method including an structural scheme of cross-section of the river by providing the information of riverbed and cross-section of the river. This is considered to solve an issue of insufficient data on accuracy and based on a lack of information of the river based on the two-dimensional lines, making it feasible to (steadily) improve the function of RIMGIS and to operate management tasks. Therefore, it is highly expected to enhance aforementioned technology of the river information management as a great foundation that maximizes the utilization of the river management to support RIMGIS for the development of national river management data.

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

A Suitability Analysis of Public Owned Land Build Small Park - The Case of Busan Megalopolis - (소규모 공원 조성을 위한 국공유지의 적합성 평가 - 부산광역시를 대상으로 -)

  • Kim, Yeong-Ha;Yeo, Un-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.31-41
    • /
    • 2010
  • This research aims to present a methodological approach for repurposing small pockets of national/public lands, which can be constructed as parks, through an investigation of the present status of these areas of national/public lands that are scattered around Busan Megalopolis as well as the suitability of their construction. In order to attain this, this study looked at the present status of these small areas of national/public lands by utilizing a national land, city land list (lot number), land registration map and satellite image of Busan Megalopolis, and evaluating their suitability as parks through GIS analysis and classification. As a result, these small areas of lands with the potential to be turned into parks include 516 spots($375,934m^2$). Geographically, 39% of these areas are located on flat land and are the most scattered. 260 places met the requirements for optimal placement for conversion, while convenience included 305 places, and availability 267 places. The most optimal of the places meeting such standards include 61 spots. The characteristics of these areas of national/public lands include being below $500m^2$, with flatlands and open areas above a 5' grade occupy the highest ratio, accounting for 25.4% of the land studied. These results have offered a methodology for a GIS DB, which can visualize the data for a positive utilization be yond the simple level of the maintenance/preservation of national/public lands and provide basic data for the utilization and management of these types of areas in the future.