• Title/Summary/Keyword: Satellite map

Search Result 766, Processing Time 0.031 seconds

A Study on the Accuracy Estimation by Number of Control Points in High Resolution Images (고해상도 영상에서 기준점 개수에 따른 정확도 평가에 관한 연구)

  • Choi, Hyun;Kim, Gihong;Park, Hong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.309-316
    • /
    • 2018
  • The high-resolution satellite images provided by Kompsat-3A, a multipurpose satellite, have various applications such as digital map generation, 3D image generation, and DEM generation. In order to utilize high-resolution satellite images, the user must create an orthoimage in order to use the image in a suitable manner. The position and the number of the ground reference points affect the accuracy of the orthoimage. In particular, the Kompsat-3A satellite image has a high resolution of about 0.5m, so the difficulty in selecting the ground control points and the accuracy of the selected point will have a great influence on the subsequent application process. Therefore, in this study, we analyzed the influence of the number of ground reference points on the accuracy of the terrestrial satellite images.

CO-REGISTRATION OF KOMPSAT IMAGERY AND DIGITAL MAP

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.11-13
    • /
    • 2008
  • This study proposes the method to use existing digital maps as one of the technologies to exclude individual differences that occur in the process of manually determining GCP for the geometric correction of KOMPSAT images and applying it to the images and to automate the generation of ortho-images. It is known that, in case high-resolution satellite images are corrected geometrically by using RPC, first order polynomials are generally applied as the correction formula in order to obtain good results. In this study, we matched the corresponding objects between 1:25,000 digital map and a KOMPSAT image to obtain the coefficients of the zero order polynomial and showed the differences in the pixel locations obtained through the matching. We performed proximity corrections using the Boolean operation between the point data of the surface linear objects and the point data of the edge objects of the image. The surface linear objects are road, water, building from topographic map.

  • PDF

Application of Landsat ETM images for spatial property analysis of tidal flat in west Seohan bay, North Korea

  • Jo, Myung-Hee;Kim, Sung-Jae;Jo, Wha-Ryong;Lee, Yun-Hwa;Yoo, Hong-Ryoug
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1415-1417
    • /
    • 2003
  • In this study, as the passing of a year, the changes of tidal flat area in Seohan Bay, North Korea was monitored through using Landsat ETM Data and the ancient topological map. The map to present tidal flat distribution characteristic based on the ancient topographical map (1918) was constructed as GIS DB. In addition, a tidal flat distribution map was estimated by using the satellite images with unsupervised classification method. Even though it is difficult to approach to study area, it was possible to gain the data and to monitor the change of the coast tidal flat by comparing to area change yielded.

  • PDF

Analysis of Landslide Characteristics of Inje Area Using SPOT5 Images and GIS Analysis (SPOT5영상과 GIS분석을 이용한 인제 지역의 산사태 특성 분석)

  • Oh, Che-Young;Kim, Kyung-Tag;Choi, Chul-Uong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.445-454
    • /
    • 2009
  • Localized unprecedented torrential rain and heavy rainfall cause repeated damages and make it difficult to detect and predict the landslide caused by heavy rainfall. To analyze the landslide characteristics of Inje area this study used satellite images photographed after the occurrence of landslide caused by the typhoon Ewiniar occurred in July, 2006, and for GIS analysis purpose, interpreted the satellite images (SPOT5) visually to digitize into developing parts, water traveling parts and sediment parts. For analysis of spatial characteristics, landslide areas obtained from visual interpretation of digital map, 3rd & 4th forest vegetation maps and detailed soil map and grids were overlaid and analyzed. As a result, in regard to topographic features, landslide occurred at places, of which average slope is $26.34^{\circ}$, had south, south-east, south-west aspects and average altitude of 627m. From hydrological analysis, it was found out that water traveling area rapidly spread approaching water traveling area and sediment area. From forest type analysis, it was found out that landslide occurrence was high in pine woods, and in terms of girth class attribute, landslide occurred in small-sized woods, in which the crown occupancy of trees that have the diameter at breast height, 6~16cm, was greater than 50%. From the analysis of soil series, landslide areas constitute 37.85% of OdF and 37.35% of SmF, which had sandy loam soil and excellent drainage capacity. Through this study, landslides in Inje area were characterized and SPOT5 images of 2.5m resolution could be used. But there was a difficulty in determining water traveling parts adjacent to urban area.

Tectonic Link between NE China and Korean Peninsula, Revealed by Interpreting CHAMP Satellite Magnetic and GRACE Satellite Gravity Data

  • Choi, Sungchan;Oh, Chang-Whan;Luehr, Herrmann
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.209-217
    • /
    • 2006
  • The major continental blocks in NE-Asia are the North China Block and the South China Blo, which have collided, starting from the Korean peninsula. The suture zone in NE China between two blocks is well defined from the QinIing-Dabie-Orogenic Belt to the Jiaodong (Sulu) Belt by the geological and geophysical interpretation. The discovery of high pressure metamorphic rocks in the Hongsung area of the Korean peninsula can be used to estimate the suture zone. This indicates that the suture zone in the Jiaodong Belt might be extended to Hongsung area. However, due to the lack of geological and geophysical data over the Yellow sea, the extension of the suture zone to the Korean peninsula across the Yellow Sea is obscure. To find out the tectonic relationship between NE China and the Korean peninsula it is necessary to complete U-ie homogeneous geophysical dataset of NE Asia, which can be provided by satellite observations. The CHAMP lithospheric magnetic field (MF3) and CHAMP-GRACE gravity field, combined with surface measured data, allow a much more accurate in-ference of tectonic structures than previously available. The CHAMP magnetic anomaly map reveals significant magnetic lows in the Yellow Sea near Nanjing and Hongsung, where are characterized by gravity highs on U-ie CHAMP-GRACE gravity anomaly map. To evaluate the depth and location of poten-tial field anomaly causative bodies, the Euler Deconvolution method is implemented. After comparing the two potential field solutions with the simplified geological map containing tectonic lines and the distribution of earthquakes epicenters, it is found that the derived structure boundaries of both are well coincident with the seismic activities as well as with the tectonic lineaments. The interpretation of the CHAMP satellite magnetic and GRACE satellite gravity datasets reveal two tectonic boundaries in U-ie Yellow Sea and the Korean peninsula, indicating U-ie norttiern and southern margins of the suture zone between the North China Block and the South China Block. The former is extended from the Jiaodong Belt in East China to the Imjingang Belt on the Korean peninsula, the later from Nanjing, East China, to Hongsung, the Korean peninsula. The tectonic movement in or near the suture zone might be responsible for the seismic activities in the western region of the Korean Peninsula and the development of the Yellow Sea sedimentary basin.

  • PDF

Verification of Landslide Hazard using RS and GIS Methods (RS와 GIS 기법을 활용한 산사태 위험성의 검증)

  • Cho, Nam-Chun;Choi, Chul-Uong;Jeon, Seong-Woo;Han, Kyung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.54-66
    • /
    • 2006
  • Korea Forest Service made the landslide hazard map for all mountainous districts over the country in May 2005. In this study, we selected landslide areas occurred in Jeonbuk from 02 August 2005 to 03 August 2005 as the study area. We extracted landslide areas using images taken by PKNU 3 System, which was developed by PE&RS Laboratory in Dept. of Satellite Information Sciences, Pukyong National University and verified the accuracy of landslide hazard map by overlaying landslide hazard areas extracted by PKNU 3 images. And we analyzed characteristics of an altitude, a gradient, an inclined direction, a flow length, a flow accumulation for landslide areas using mountainous terrain analysis and Stream Network analysis of ArvView 3.3. As a result of this study, it is necessary to adjust the unitage(%) by the class and to modify and improve the score table for prediction of landslide-susceptible area forming the foundation of making the landslide hazard maps.

  • PDF

A Study on the Calculation Methods on the Ratio of Green Coverage Using Satellite Images and Land Cover Maps (위성영상과 토지피복도를 활용한 녹피율 산정방법 연구)

  • Moon, Chang-Soon;Shim, Joon-Young;Kim, Sang-Bum;Lee, Shi-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.4
    • /
    • pp.53-60
    • /
    • 2010
  • This study aims at suggesting the attributes and limitations of each methods through the evaluation of the verified analysis results, so that it will be possible to select an efficient method that may be applied to assess the green coverage ratio. Green coverage areas of each sites subject to this study were assessed utilizing the following four methods. First, assessment of green coverage area through direct planimetry of satellite images. Second, assessment of green coverage area using land cover map. Third, assessment of green coverage area utilizing the band value in satellite images. Forth, assessment of green coverage area using and land cover map and reference materials. For this study, four urban zones of the City of Seosan in Chungcheongnam-do. As a result, this study show that the best calculation method is the one that combines the merits of first and second methods. This method is expected to be suitable for application in research sites of middle size and above. It is also deemed that it will be possible to apply this method in researches of wide area, such as setting up master plans for parks and green zones established by each local self-government organizations.

Histogram-based road border line extractor for road extraction from satellite imagery (위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자)

  • Lee, Dong-Hoon;Kim, Jong-Hwa;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.28-34
    • /
    • 2007
  • A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.

Accuracy Estimation of Electro-optical Camera (EOC) on KOMPSAT-1

  • Park, Woon-Yong;Hong, Sun-Houn;Song, Youn-Kyung
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • Remote sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation./sup 1)/ EOC (Electro -Optical Camera) sensor loaded on the KOMPSAT-1 (Korea Multi- Purpose Satellite-1) performs the earth remote sensing operation. EOC can get high-resolution images of ground distance 6.6m during photographing; it is possible to get a tilt image by tilting satellite body up to 45 degrees at maximum. Accordingly, the device developed in this study enables to obtain images by photographing one pair of tilt image for the same point from two different planes. KOMPSAT-1 aims to obtain a Korean map with a scale of 1:25,000 with high resolution. The KOMPSAT-1 developed automated feature extraction system based on stereo satellite image. It overcomes the limitations of sensor and difficulties associated with preprocessing quite effectively. In case of using 6, 7 and 9 ground control points, which are evenly spread in image, with 95% of reliability for horizontal and vertical position, 3-dimensional positioning was available with accuracy of 6.0752m and 9.8274m. Therefore, less than l0m of design accuracy in KOMPSAT-1 was achieved. Also the ground position error of ortho-image, with reliability of 95%, is 17.568m. And elevation error showing 36.82m was enhanced. The reason why elevation accuracy was not good compared with the positioning accuracy used stereo image was analyzed as a problem of image matching system. Ortho-image system is advantageous if accurate altitude and production of digital elevation model are desired. The Korean map drawn on a scale of 1: 25,000 by using the new technique of KOMPSAT-1 EOC image adopted in the present study produces accurate result compared to existing mapping techniques involving high costs with less efficiency.

  • PDF

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF