• 제목/요약/키워드: Satellite imagery analysis

검색결과 355건 처리시간 0.026초

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • 대한원격탐사학회지
    • /
    • 제34권4호
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • 한국측량학회지
    • /
    • 제37권2호
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구 (Comparative Study on Hyperspectral and Satellite Image for the Estimation of Chlorophyll a Concentration on Coastal Areas)

  • 신지선;김근용;유주형
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.309-323
    • /
    • 2020
  • 원격탐사를 이용한 연안 해역의 클로로필 농도 추정은 대부분 다분광 위성 영상 분석을 통해 수행되어 오고 있다. 최근에는 초분광 영상을 활용한 다양한 연구가 시도되고 있으며, 특히 항공기 기반 초분광 영상은 높은 공간 해상도로 좁은 밴드 폭을 가진 수백 개의 밴드로 구성되어 기존의 다분광 위성 영상을 통한 클로로필 추정보다 연안 해역에서 매우 효과적일 수 있다. 본 연구에서는 연안 해역의 클로로필 농도 추정을 위해 초분광 및 위성 기반 클로로필 영상을 비교 검증을 수행하였다. 한반도 남해안에서 수행된 현장조사로 획득된 클로로필 농도 자료와 해수 스펙트럼 자료를 분석한 결과, 높은 클로로필 농도를 갖는 해수 스펙트럼은 570 nm와 680 nm 파장대역 부근에서 peak를 보였다. 이러한 스펙트럼 특징을 활용하여 클로로필 농도 추정을 위한 새로운 밴드비(570 / 490 nm)가 제시되었고, 밴드비와 현장 클로로필 농도 간의 회귀 분석을 통해 새로운 클로로필 경험식이 생성되었다. 현장 클로로필 농도와의 검증 결과, R2의 0.70, RMSE와 mean bias가 각각 2.43와 3.46 mg m-3으로 유효한 결과를 보였다. 새로운 경험식을 초분광 영상과 위성 영상에 적용한 결과, 초분광 클로로필 영상과 현장 클로로필 간의 평균 RMSE는 0.12 mg m-3로 위성 클로로필 영상에서 보다 더 높은 정확도로 클로로필 농도 추정 가능하였다. 이 결과를 통하여 초분광 영상을 활용하여 보다 높은 정확도로 연안 해역 클로로필 농도의 고해상도 공간 분포 정보 제공이 가능할 것으로 기대된다.

시뮬레이션 자료를 이용한 고해상도 인공위성자료의 정확도 분석 (Analysis for Accuracy of High Resolution Satellite Data Using Simulation data)

  • 서두천;이동한;박수영;송정헌;임효숙
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.255-258
    • /
    • 2006
  • With the increasing availability of high-resolution satellite imagery, the demand for ortho-rectified products will also be growing. High-resolution of the imagery (up to 1m) the desired accuracy of the ortho-rectification is more sensitive to a number of factors. including satellite position, velocity, internal sensor error (specifically, misalignment. lens distortion, etc.). sensor modeling, relief displacement and matching error, etc. The main objective of this study is to analysis the accuracy of high resolution satellite data using simulation data.

  • PDF

위성영상을 이용한 서부임진강하구권역 내 DMZ 산불지역 회복성 분석 (Recoverability analysis of Forest Fire Area Based on Satellite Imagery: Applications to DMZ in the Western Imjin Estuary)

  • 김장수;오정식
    • 한국지형학회지
    • /
    • 제28권1호
    • /
    • pp.83-99
    • /
    • 2021
  • Burn severity analysis using satellite imagery has high capabilities for research and management in inaccessible areas. We extracted the forest fire area of the DMZ (Demilitarized Zone) in the western Imjin Estuary which is restricted to access due to the confrontation between South and North Korea. Then we analyzed the forest fire severity and recoverability using atmospheric corrected Surface Reflectance Level-2 data collected from Landsat-8 OLI (Operational Land Imagery) / TIRS (Thermal Infrared Sensor). Normalized Burn Ratio (NBR), differenced NBR (dNBR), and Relative dNBR (RdNBR) were analyzed based on changes in the spectral pattern of satellite images to estimate burn severity area and intensity. Also, we evaluated the recoverability after a forest fire using a land cover map which is constructed from the NBR, dNBR, and RdNBR analyzed results. The results of dNBR and RdNBR analysis for the six years (during May 30, 2014 - May 30, 2020) showed that the intensity of monthly burn severity was affected by seasonal changes after the outbreak and the intensity of annual burn severity gradually decreased after the fire events. The regrowth of vegetation was detected in most of the affected areas for three years (until May 2020) after the forest fire reoccurred in May 2017. The monthly recoverability (from April 2014 to December 2015) of forests and grass fields was increased and decreased per month depending on the vegetation growth rate of each season. In the case of annual recoverability, the growth of forest and grass field was reset caused by the recurrence of a forest fire in 2017, then gradually recovered with grass fields from 2017 to 2020. We confirmed that remote sensing was effectively applied to research of the burn severity and recoverability in the DMZ. This study would also provide implications for the management and construction statistics database of the forest fire in the DMZ.

SAR(Synthetic Aperture Radar) 영상 분석도구 개발기술 동향 (Technology Trend in Synthetic Aperture Radar (SAR) Imagery Analysis Tools)

  • 이강진;전성경;성석용;강기묵
    • 우주기술과 응용
    • /
    • 제1권2호
    • /
    • pp.268-281
    • /
    • 2021
  • 합성 개구 레이다(SAR, synthetic aperture radar)는 주야간 및 기상 조건에 구애받지 않고 원하는 지점을 관측할 수 있다는 장점으로 인해 최근 그 수요가 점점 늘어나고 있다. SAR 위성으로 관측한 원시 데이터는 위성궤도보정, 방사보정, multi-looking, geocoding과 같은 전처리 과정이 필요하며, 사용자의 목적에 따라 물체 탐지, 변화탐지, DEM(Digital Elevation Model) 등 영상 활용을 하기 위해서는 추가적인 처리 과정이 요구된다. 이러한 전처리와 연산과정은 매우 복잡하며 많은 시간과 컴퓨팅 자원을 필요로 한다. 주로 SAR 영상을 활용하는 기관에서는 영상을 편리하고 쉽게 처리하기 위해 각 기관의 활용 목적에 맞는 분석도구를 개발하여 사용 및 외부 수요자들에게 제공하고 있다. 본 논문에서는 국내외에서 이용하고 있는 대표적인 SAR 분석도구들의 기능 및 특성에 대해 소개하고자 한다.

Mapping Poverty Distribution of Urban Area using VIIRS Nighttime Light Satellite Imageries in D.I Yogyakarta, Indonesia

  • KHAIRUNNISAH;Arie Wahyu WIJAYANTO;Setia, PRAMANA
    • Asian Journal of Business Environment
    • /
    • 제13권2호
    • /
    • pp.9-20
    • /
    • 2023
  • Purpose: This study aims to map the spatial distribution of poverty using nighttime light satellite images as a proxy indicator of economic activities and infrastructure distribution in D.I Yogyakarta, Indonesia. Research design, data, and methodology: This study uses official poverty statistics (National Socio-economic Survey (SUSENAS) and Poverty Database 2015) to compare satellite imagery's ability to identify poor urban areas in D.I Yogyakarta. National Socioeconomic Survey (SUSENAS), as poverty statistics at the macro level, uses expenditure to determine the poor in a region. Poverty Database 2015 (BDT 2015), as poverty statistics at the micro-level, uses asset ownership to determine the poor population in an area. Pearson correlation is used to identify the correlation among variables and construct a Support Vector Regression (SVR) model to estimate the poverty level at a granular level of 1 km x 1 km. Results: It is found that macro poverty level and moderate annual nighttime light intensity have a Pearson correlation of 74 percent. It is more significant than micro poverty, with the Pearson correlation being 49 percent in 2015. The SVR prediction model can achieve the root mean squared error (RMSE) of up to 8.48 percent on SUSENAS 2020 poverty data.Conclusion: Nighttime light satellite imagery data has potential benefits as alternative data to support regional poverty mapping, especially in urban areas. Using satellite imagery data is better at predicting regional poverty based on expenditure than asset ownership at the micro-level. Light intensity at night can better describe the use of electricity consumption for economic activities at night, which is captured in spending on electricity financing compared to asset ownership.

정지궤도 기상위성 자료를 활용한 강우유형별 강우량 추정연구 (A Study on the Algorithm for Estimating Rainfall According to the Rainfall Type Using Geostationary Meteorological Satellite Data)

  • 이은주;서명석
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2006
  • Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.

  • PDF

THE DEVELOPMENT OF CHANGE DETECTION SOFTWARE FOR PUBLIC SERVICES

  • Jeong, Soo;Lee, Sun-Gu;Kim, Youn-Soo;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.702-705
    • /
    • 2006
  • Change detection is a core function of remote sensing. It can be widely used in public services such as land monitoring, damage assessment from disaster, analysis of city growth, etc. However, it seems that the change detection using satellite imagery has not been fully used in public services. For the person who is in charge of public services, it seems not to be ease to implement the change detection because various functions are combined into it. So, to promote the use of the change detection in public services, the standard, the process and the method for the change detection in public services should be established. And the software which supports that will be very useful. This study aims to promote the use of satellite imagery in public services by building up the change detection process which are suitable for general public services and developing the change detection software to support the process. The software has been developed using ETRI Components for Satellite Image Processing to support the interoperability with other GIS software.

  • PDF

도로 토목 공사 현장에서 UAV를 활용한 위성 영상 지도의 정확도 분석 (Accuracy Analysis of Satellite Imagery in Road Construction Site Using UAV)

  • 신승민;반창우
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.753-762
    • /
    • 2021
  • Google provides mapping services using satellite imagery, this is widely used for the study. Since about 20 years ago, research and business using drones have been expanding. Pix4D is widely used to create 3D information models using drones. This study compared the distance error by comparing the result of the road construction site with the DSM data of Google Earth and Pix4 D. Through this, we tried to understand the reliability of the result of distance measurement in Google Earth. A DTM result of 3.08 cm/pixel was obtained as a result of matching with 49666 key points for each image. The length and altitude of Pix4D and Google Earth were measured and compared using the obtained PCD. As a result, the average error of the distance based on the data of Pix4D was measured to be 0.68 m, confirming that the error was relatively small. As a result of measuring the altitude of Google Earth and Pix4D and comparing them, it was confirmed that the maximum error was 83.214m, which was measured using satellite images, but the error was quite large and there was inaccuracy. Through this, it was confirmed that there are difficulties in analyzing and acquiring data at road construction sites using Google Earth, and the result was obtained that point cloud data using drones is necessary.