• Title/Summary/Keyword: Satellite data

Search Result 4,262, Processing Time 0.031 seconds

TELEMETRY TIMING ANALYSIS FOR IMAGE RECONSTRUCTION OF KOMPSAT SPACECRAFT

  • Lee, Jin-Ho;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The KOMPSAT(Korea Multi-Purpose SATellite) has two optical imaging instruments called EOC(Electro-Optical Camera) and OSMI (Ocean Scanning Multispectral Imager). The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transfeered from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time) which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  • PDF

Ground Receiving System for KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Choi, Hae-Jin;Park, Sung-Og;Lee, Dong-Han;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Remote sensing division of satellite technology research center (SaTReC) , Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. The developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies for the ground receiving system for high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development from Dec. 1998 until Aug. 2002, the system had been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialized system for KOMPSAT-1. Currently the system is under customization for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

Experimental Assessment of Satellite-based Positioning System for GIS Data Acquisition (GIS 데이터 취득을 위한 위성측위 환경의 실험적 평가)

  • Suh, Yongcheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.51-58
    • /
    • 2003
  • Satellite-based positioning system such as global positioning system(GPS) has played a major role in data capture technology for constructing GIS database. Recent advances in satellite-based positioning technology have made the task of precisely locating features fast, easy, and inexpensive, and determined their current latitude and longitude. However, there are still situations where satellite-based positioning service will not provide users with desired precision such as in urban environments, that is, the only severe handicap still hampering satellite-based positioning is the well-known problem of restricted satellite visibilities. As the majority of the creation and updating of road and street network are carried out in urban environments, the obstruction problem considerably impedes the wider application of satellite-based positioning. This paper presents the current GPS-based positioning environment for GIS data acquisition in urban areas. A field experiment with measurement vehicle has been performed under varying operational conditions and areas where shading of satellite signal is encountered due to buildings and overpasses with measurement vehicle in order to evaluate the availability of existing GPS-based positioning. We found that the current GPS-base positioning system we used in this study was insufficient for a precise GIS data acquisition. This research would make a contribution for the development of base data to supplementary technology, which can complement the existing GPS-based positioning.

  • PDF

The Cross-validation of Satellite OMI and OMPS Total Ozone with Pandora Measurement (지상 Pandora와 위성 OMI와 OMPS 오존관측 자료의 상호검증 방법에 대한 분석 연구)

  • Baek, Kanghyun;Kim, Jae-Hwan;Kim, Jhoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Korea launched Geostationary Environmental Monitoring Satellite (GEMS), a UV/visible spectrometer that measure pollution gases on 18 February 2020. Because satellite retrieval is an ill-posed inverse solving process, the validation with ground-based measurements or other satellite measurements is essential to obtain reliable products. For this purpose, satellite-based OMI and OMPS total column ozone (TCO), and ground-based Pandora TCO in Busan and Seoul were selected for future GEMS validation. First of all, the goal of this study is to validate the ground ozone data using characteristics that satellite data provide coherent ozone measurements on a global basis, although satellite data have a larger error than the ground-based measurements. In the cross validation between Pandora and OMI TCO, we have found abnormal deviation in ozone time series from Pandora #29 observed in Seoul. This shows that it is possible to perform inverse validation of ground data using satellite data. Then OMPS TCO was compared with verified Pandora TCO. Both data shows a correlation coefficient of 0.97, an RMSE of less than 2 DU and the OMPS-Pandora relative mean difference of >4%. The result also shows the OMPS-Pandora relative mean difference with SZA, TCO, cross-track position and season have insignificant dependence on those variables.In addition, we showed that appropriate thresholds depending on the spatial resolution of each satellite sensor are required to eliminate the impact of the cloud on Pandora TCO.

Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia (다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Sur, Chanyang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

Runoff Estimation Using Rainfalls Derived from Multi-Satellite Images (다중 위성 강우자료를 이용한 유출 평가)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.107-118
    • /
    • 2014
  • The objective of this study is to suggest a method for estimating rainfall-runoff relationship using runoff analysis with satellite rainfall and global geographic data for the region due to lack of observed data. This study uses CMORPH and GSMaP_NRT as satellite rainfall data, and GTOPO30 and GLCC as global geographic data. IFAS is used for runoff modeling. In the evaluation of rainfall data, the correlation coefficients of CMORPH and GSMaP_NRT with observed data are 0.37 and 0.30 respectively. Calculated peak runoffs using IFAS show small relative errors with observed data in case of parameters are not calibrated with satellite rainfall data. Therefore, the methods suggested in this study could be applied to ungauged watershed. In the future, this study will analyze runoff for North Korea, a representative inaccessible region, using satellite rainfall and global geographic data.

Economic Repercussion Effects of the Domestic Satellite Industry (국내 위성산업의 경제적 파급효과)

  • Yeo Jae-Hyun;Kim Soo-Hyun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.67-75
    • /
    • 2006
  • In this paper, we investigate the economic repercussion effects of the domestic satellite industry. The market size of the satellite industry between 2005 and 2009 is forecasted based on the world market forecast. By using the Input-Output analysis technique, three kinds of repercussion effects (domestic production, value added, workers induced by the satellite industry) between 2005 and 2009 are calculated.

  • PDF

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Investigation on Tideland Reclamation Projects in North Korea using Satellite Image Data (인공위성 화상자료를 이용한 북한의 간척자원 조사)

  • 조병진;이지근;안기원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.175-180
    • /
    • 1999
  • The purpose of this study is to investigate on tideland recalamation project as a part of situation on farm land improvement measures in North Korea. By using satelite image data beyond the national boundaries, it makes possbile to analyze tideland reclamation projects, and owing to the developed software and procedure we can analyze data regardless of difference in data acquistion date. Satellite image data LANDSAT JEARS-1 data are mainly used, and analyzing software ER Mapper, ERDAS , IDRISI are used . Reclamation survey result made by the ministry of unification in 1994 were examined by means of remote sensing using satellite image data. The results are ; Completed and/or partly completed project are 24, 596ha and planned are about 142, 223 ha, 166, 819 ha in total. However, they already reported about 300 thousand ha would be reclamined from the sea in early 1980.

  • PDF