• Title/Summary/Keyword: Satellite communication

Search Result 1,727, Processing Time 0.04 seconds

INTRODUCTION OF COMS SYSTEM

  • Baek, Myung-Jin;Han, Cho-Young
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.56-59
    • /
    • 2006
  • In this paper, Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program is introduced. COMS program is one of the Korea National Space Programs to develop and operate a pure civilian satellite of practical-use for the compound missions of meteorological observation and ocean monitoring, and space test of experimentally developed communication payload on the geostationary orbit. The target launch of COMS is scheduled at the end of 2008. COMS program is international cooperation program between KARI and ASTRIUM SAS and funded by Korean Government. COMS satellite is a hybrid satellite in the geostationary orbit, which accommodates multiple payloads of MI(Meteorological Imager), GOCI(Geostationary Ocean Color Imager), and the Ka band Satellite Communication Payload into a single spacecraft platform. The MI mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The GOCI mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service mandatory.

  • PDF

Stabilization Control of line of sight of OTM(On-The-Move) Antenna (OTM 단말기 안테나 시선 안정화 제어)

  • Kang, Min-Sig;Cho, Yong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2073-2082
    • /
    • 2010
  • The 4-th generation of mobile communication aims to realize global, fast and mobile communication service. The satellite communication charges a key role in this field. In this study, an OTM(On-The-Move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite was addressed. Since vehicles move during communication, active antenna line-of-sight stabilization is a core technology to guarantee high satellite communication quality. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. Various disturbance torques such as static and dynamic mass imbalance torques, variation of moment of inertia according to elevation angle, friction torque related to vehicle motion, equivalent disturbance torque due to antenna roll motion, etc. were analyzed. As a robust stabilization control, rate feedback with sliding mode control and position feedback with proportional+integral control was suggested. To compensate antenna roll motion, a supplementary roll rate feed forward control was included beside of the feedback control loop. The feasibility of the analysis and the proposed control design were verified along with some simulation results.

A Development of Satellite Communication Link Analysis Tool

  • Ayana, Selewondim Eshetu;Lim, SeongMin;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.117-129
    • /
    • 2020
  • In a Satellite communication system, a link budget analysis is the detailed investigation of signal gains and losses moving through a channel from a sender to receiver. It inspects the fading of passed on data signal waves due to the process of spreading or propagation, including transmitter and receiver antenna gains, feeder cables, and related losses. The extent of the proposed tool is to make an effective, efficient, and user-friendly approach to calculate link budget analysis. It is also related to the satellite communication correlation framework by building up a graphical interface link analysis tool utilizing STK® software with the interface of C# programming. It provides better kinds of graphical display techniques, exporting and importing data files, printing link information, access data, azimuth-elevation-range (AER), and simulation is also possible at once. The components of the link budget analysis tool include transmitter gain, effective isotropic radiated power (EIRP), free space loss, propagation loss, frequency Doppler shift, flux density, link margin, elevation plot, etc. This tool can be useful for amateur users (e.g., CubeSat developers in the universities) or nanosat developers who may not know about the RF communication system of the satellite and the orbital mechanics (e.g., orbit propagators) principle used in the satellite link analysis.

Design and Implementation of Real Time AGC for Satellite TDMA Communication Systems (위성 시분할다중접속 통신시스템을 위한 실시간 자동이득제어기 설계 및 구현)

  • Lee, Huisoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.298-304
    • /
    • 2013
  • Channel attenuation must be taken into account when designing Time Division Multiple Access(TDMA) communication systems. In addition, Automatic Gain Control (ACG) is a requirement in satellite communication systems in order to form a stable network regardless of rapidly changes in channel environment. In this study, we present an AGC with possible real-time application to time slots in satellite TDMA communication systems. A satellite TDMA system was designed and implemented in order to test the performance of the proposed real-time AGC, and the system's BER (Bit Error Rate) was found by applying the proposed AGC algorithm. These results can be expected to be of high value in improving the stability of satellite TDMA communication systems in the future.

The Characteristic Analysis of Wave Propagation for ICO Communication Satellite (중궤도(ICO) 통신 위성의 전파 전달 특성 분석)

  • 박대성;이준호;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.199-210
    • /
    • 1998
  • It is very important to analyze and predict the propagation characteristics of LEO communication satellite at the service area using computer simulation. In this paper, the propagation characteristics of a satellite communication system are analyzed using ray tracing technique. We predicted the receiving environment and obtain the delay profile and total received power at each position using ray tracing method by changing both the azimuth and elevation angles after establishing the imaginary receiving space. The final goal of this paper is to analyze and understand the wave propagation characteristics of the satellite communication network about 2 GHz frequency band. The prediction method presented in this paper may help us to design satellite transceiver system and to construct a satellite communication network.

  • PDF

Conceptual Design of the RF Links for KASS Satellite Communication System (KASS 위성통신시스템 RF 링크 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.12-17
    • /
    • 2016
  • ICAO (International Civil Aviation Organization) recommends the introduction of SBAS (Satellite Based Augmentation System) in 2025, which provides GNSS (Global Navigation Satellite System) correction data and the ranging signal via GEO (geostationary earth orbit) satellites to GNSS users. In this paper, we present the basic design results of the satellite communication system RF link for the Korean SBAS systems, KASS (Korea Augmentation Satellite System) which is going on the development & implementation. KASS RF link was designed in consideration of both the C-band and Ku-band uplinks to meet the international standard requirements for the SBAS system, and identified the minimum EIRP and G/T performance of the KASS uplink station for each frequency band. These analysis results for the RF link design are expected to be used for an effective design of the subsystem specifications for KASS satellite communication system.

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF

Research Trends in Global Wireless Communication Technology Based on the LEO Satellite Communication Network (저궤도 위성통신망 기반 글로벌 무선통신 기술 동향)

  • Kim, Pansoo;Ryu, Joon-Gyu;Byun, Woojin
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.83-91
    • /
    • 2020
  • In this paper, the contemporary deployment of broadband and Internet-of-Things (IoT) services based on the Low Earth Orbit (LEO) satellite communication network is presented. First, the global service and key technologies of small and nanosatellites are briefly addressed, and then, the progress of relevant standard technologies is explained. Finally, the overall potential for the future development of the LEO satellite communication network is highlighted.