• Title/Summary/Keyword: Satellite SST

Search Result 169, Processing Time 0.022 seconds

Recent Trends of Abnormal Sea Surface Temperature Occurrence Analyzed from Buoy and Satellite Data in Waters around Korean Peninsula

  • Choi, Won-Jun;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.355-364
    • /
    • 2022
  • In this study a tendency of abnormal sea surface temperature (SST) occurrence in the seas around South Korea is analyzed from daily SST data from satellite and 14 buoys from August 2020 to July 2021. As thresholds 28℃ and 4℃ are used to determine marine heatwaves(MHWs) and abnormal low water temperature (ALWT), respectively, because those values are adopted by the National Institute of Fisheries Science for the breaking news of abnormal temperature. In order to calculate frequency of abnormal SST occurrence spatially by using satellite SST, research area was divided into six areas of coast and three open seas. ALWT dominantly appeared over a wide area (7,745 km2) in Gyeonggi Bay for total 94 days and it was also confirmed from buoy temperature showing an occurrence number of 47 days. MHWs tended to be high in frequency in the coastal areas of Chungcheongdo and Jeollabukdo and the south coastal areas while in case of buoy temperature Jupo was the place of high frequency (32 days). This difference was supposed to be due to the low accuracy of satellite SST at the coasts. MHWs are also dominant in offshore waters around Korean Peninsula. Although detecting abnormal SST by using satellite SST has advantage of understanding occurrence from a spatial point of view, we also need to perform detection using buoys to increase detection accuracy along the coast.

A RAMS Atmospheric Field I Predicted by an Improved Initial Input Dataset - An Application of NOAA SST data - (초기 입력 자료의 개선에 의한 RAMS 기상장의 예측 I - NOAA SST자료의 적용 -)

  • Won, Gyeong-Mee;Jeong, Gi-Ho;Lee, Hwa-Woon;Jung, Woo-Sik;Lee, Kang-Yoel
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.489-499
    • /
    • 2009
  • In an effort to examine the Regional Atmospheric Modeling System (RAMS ver. 4.3) to the initial meteorological input data, detailed observational data of NOAA satellite SST (Sea Surface Temperature) was employed. The NOAA satellite SST which is currently provided daily as a seven-day mean value with resolution of 0.1 $^{\circ}$ grid spacing was used instead of the climatologically derived monthly mean SST using in RAMS. In addition, the RAMS SST data must be changed new one because it was constructed in 1993. For more realistic initial meteorological fields, the NOAA satellite SST was incorporated into the RAMS-preprocess package named ISentropic Analysis package (ISAN). When the NOAA SST data was imposed to the initial condition of prognostic RAMS model, the resultant performance of near surface atmospheric fields was discussed and compared with that of default option of SST. We got the good results that the new SST data was made in a standard RAMS format and showed the detailed variation of SST. As the modeling grid became smaller, the SST differences of the NOAA SST run and the RAMS SST43 (default) run in diurnal variation were very minor but this research can apply to further study for the realistic SST situation and the development in predicting regional atmospheric field which imply the regional circulation due to differential surface heating between sea and land or climatological phenomenon.

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.

Prediction of SST for Operational Ocean Prediction System

  • Kang, Yong-Quin
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.189-194
    • /
    • 2001
  • A practical algorithm for prediction of the sea surface temperatures (SST)from the satellite remote sensing data is presented in this paper. The fluctuations of SST consist of deterministic normals and stochastic anomalies. Due to large thermal inertia of sea water, the SST anomalies can be modelled by autoregressive or Markov process, and its near future values can be predicted provided the recent values of SST are available. The actual SST is predicted by superposing the pre-known SST normals and the predicted SST anomalies. We applied this prediction algorithm to the NOAA AVHRR weekly SST data for 18 years (1981-1998) in the seas adjacent to Korea (115-$145^{\circ}E$, 20-$55^{\circ}N$). The algorithm is applicable not only for prediction of SST in near future but also for nowcast of SST in the cloud covered regions.

  • PDF

Estimation of the air temperature over the sea using the satellite data

  • Kwon B. H.;Hong G. M.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.392-393
    • /
    • 2005
  • Due to the temporal and spatial simultaneity and the high-frequency repetition, the data set retrieved from the satellite observation is considered to be the most desirable ones for the study of air-sea interaction. With rapidly developing sensor technology, satellite-retrieved data has experienced improvement in the accuracy and the number of parameters. Nevertheless, since it is still impossible to directly measure the heat fluxes between air and sea, the bulk method is an exclusive way for the evaluation of the heat fluxes at the sea surface. It was noted that the large deviation of air temperature in the winter season by the linear regression despite good correlation coefficients. We propose a new algorithm based on the Fourier series with which the SST and the air temperature. We found that the mean of air temperature is a function of the mean of SST with the monthly gradient of SST inferred from the latitudinal variation of SST and the spectral energy of air temperature is related linearly to that of SST. An algorithm to obtain the air temperature over the sea was completed with a proper analysis on the relation between of air temperature and of SST. This algorithm was examined by buoy data and therefore the air temperature over the sea can be retrieved based on just satellite data.

  • PDF

Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

  • Kim, Hee-Young;Park, Kyung-Ae;Chung, Sung-Rae;Baek, Seon-Kyun;Lee, Byung-Il;Shin, In-Chul;Chung, Chu-Yong;Kim, Jae-Gwan;Jung, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor(GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to $0.93^{\circ}C$ and $0.05^{\circ}C$, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above $30^{\circ}N$. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

The Accuracy of Satellite-composite GHRSST and Model-reanalysis Sea Surface Temperature Data at the Seas Adjacent to the Korean Peninsula (한반도 연안 위성합성 및 수치모델 재분석 해수면온도 자료의 정확도)

  • Baek, You-Hyun;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.213-232
    • /
    • 2019
  • This study evaluates the accuracy of four satellite-composite (OSTIA, AVHRR, G1SST, FNMONC-S) and three model-reanalysis (HYCOM, JCOPE2, FNMOC-M) daily sea surface temperature (SST) data around the Korean Peninsula (KP) using ocean buoy data from 2011-2016. The results reveal that OSTIA has the lowest root mean square error (RMSE; 0.68℃) and FNMOC-S/M has the highest correction coefficients (r = 0.993) compared with observations, while G1SST, JCOPE2, and AVHRR have relatively larger RMSEs and smaller correlations. The large RMSEs were found in the western coastal regions of the KP where water depth is shallow and tides are strong, such as Chilbaldo and Deokjeokdo, while low RMSEs were found in the East Sea and open oceans where water depth is relatively deep such as Donghae, Ulleungdo, and Marado. We found that the main sources of the large RMSEs, sometimes reaching up to 5℃, in SST data around the KP, can be attributed to rapid SST changes during events of strong tidal mixing, upwelling, and typhoon-induced mixing. The errors in the background SST fields which are used in data assimilations and satellite composites and the missing in-situ observations are also potential sources of large SST errors. These results suggest that both satellite and reanalysis SST data, which are believed to be true observation-based data, sometimes, can have significant inherent errors in specific regions around the KP and thus the use of such SST products should proceed with caution particularly when the aforementioned events occur.

Sensitivity analysis of satellite-retrieved SST using IR data from COMS/MI

  • Park, Eun-Bin;Han, Kyung-Soo;Ryu, Jae-Hyun;Lee, Chang-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.589-593
    • /
    • 2013
  • Sea Surface Temperature (SST) is the temperature close to the ocean's surface and affects the Earth's atmosphere as an important parameter for the climate circulation and change. The SST from satellite still has biases from the error in specifying retrieval coefficients from either forward modeling or instrumental biases. So in this paper, we performed sensitivity analysis using input parameter of the SST to notice that the SST is most affected among the input parameter. We used Infrared (IR) data from the Communication, Ocean, and Meteorological Satellite (COMS)/Meteorological Imager (MI) from April 2011 to March 2012. We also used the Global Space-based Inter-Calibration System (GSICS) correction to quality of the IR data from COMS. SST was calculated by substituting the input parameters; IR data with or without the GSICS correction. The results of this sensitivity analysis, the SST was sensitive from -0.0403 to 0.2743 K when the IR data were changed by the GSICS corrections.

Study on Merging Method of SSTs Using Multi-satellite Data (다종 위성 자료를 활용한 해수면온도(SST) 합성기법 개발 연구)

  • Oh, Eun-Kyung;Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • This study introduces a technique to merge three different sea surface temperature(SST) data obtained from multi-satellite sensors. NGSST algorithm, the most popular method of related society, estimates a center pixel of target SST using temporal and spatial correlations, excluding SST accuracies according to sensing methods or properties of satellites. We suggest a merging method of SST to consider the accuracy by satellite or sensor with a comparison with NGSST method. The data used for a merged daily SST with spatial resolution of 5 km was applied from three different satellite sensors such as MODIS, AVHRR and AMSR-E from April 2 to 4, 2011 around the southern coast of Korea. Results of the comparisons showed that the new method is higher than the NGSST method and its STDEV represents a comparatively low value. In future we are planning to compare and analyze the datasets during the daytime as well as nighttime over total cycle of the day.

SEASONAL VARIATION OF THE OCEANIC WATER INTRUSIONS INTO KAGOSHIMA BAY DERIVED FROM THE SATELLITE SST AND CHL-A IMAGES

  • Hosotani, Kazunori
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.61-64
    • /
    • 2008
  • Seasonal distribution of the oceanic water intrusion was investigated using satellite SST (sea surface temperature) and chl-a (chlorophyll-a) images taken by the MODIS Aqua sensor. The warm water mass emanating periodically from the meandering Kuroshio Current brings the oceanic water intrusion, known as the 'Kyucho' phenomenon, into Kagoshima bay during the winter. Satellite SST images and buoy robot data show that this warm water intrusion has the characteristics of a semigeostrophic gravity current influenced by the Coriolis effect. However, it is difficult to find the oceanic water intrusion during the summer season considering that it is accompanied by thermal stratification, and SST shows almost the same temperature between the inner side of the bay and the ocean. In this research, the satellite chl-a images taken by MODIS Aqua were employed instead of SST images to reveal the oceanic water intrusion in each season. The enclosed bay has the tendency to undergo eutrophication caused by organic materials from land and differences in chl-a concentration of the bay water and the oceanic water. As a result, distribution of low concentration chl-a with oceanic water intrusion in summer season shows almost the same pattern in winter season. On the other hand, in spring season, both SST and chl-a images are available to differentiate the oceanic water intrusion. Therefore, applying the suitable satellite sensor images for each season is effective in the monitoring of oceanic water intrusion. Moreover, in this area, SST and chl-a distribution reveal not only the oceanic water intrusion into Kagoshima bay but also the intrusion at Fukiage seashore facing East China Sea.

  • PDF